已知三角形ABC和三角形CDE是等边三角形,连接AD. BE,M是AD的重点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 04:44:43
在△AEC和△BDC中,AC=BC∠ACE=60°-∠ECB=∠BCDEC=DC所以△AEC≌△BDC故∠CBD=∠CAE从而∠EBD=∠EBC+∠EAC由于∠AEB+∠BED+∠DEC+∠CEA=3
这题太简单了.三角形ABC和三角形CDE都是等边三角形AB=BCCD=CE∠ACB=∠DCE=60度∠BCD=∠ACE∠ACD=60度△BCD全等△ACESAS∠DBC=∠CAEAB=AC∠ACB=∠
∵△ABC和△CDE为等边三角形,∴AC=CB,CD=CE,∠ACB=∠DCE=60°,又BCD在一条直线上,∴∠ACD=∠BCE=∠DCE+∠ACE=∠ACB+∠ACE,∴△ACD≌△BCE(边角边
已知:三角形ABC中,角A、角B、角C为内角.求证:角A+角B+角C=180度.证明:延长BC到D,过点C作CE//BA,则有:角A=角ACE(两直线平行,内错角相等)角B=角ECD(两直线平行,同位
证明:∵△ABC和△CDE都是等边三角形∴AC=BC,CD=CE,∠BCE=∠ACD=120º∴△ECB≌△DCA∴∠FEC=∠ADC,CD=CE∵∠HCD=∠FCE=60º∴△E
你是要求三角形ABC的面积吧!设:bc=x,ad=y在e点做ef垂直于bc得出:ef=1/3ad=1/3y,cd=1/2bc=1/2x因为:Scde=1/2*1/3y*1/2x=6得出:xy=72Sa
没有图,我只好按照自己画的位置来证明了证明:(1)∠ACE=∠DCE+∠ACD,∠BCD=∠BCA+∠ACD∵△ABC和△CDE都是等边三角形,∴∠BCA=∠DCE=60°∴∠ACE=∠BCD在△AC
角E=30度,角ACB等于角CDE加角E,所以角CDE=30度,等腰再答:懂了没再问:嗯。。。大概吧,正在写再问:有点简略哈再答:我只写原理,你组织下。三角形的一个外角等于与它不相邻的两个内角的和。再
证明:延长BE交AC于F因为ΔABC和ΔEDC是等边三角形所以AC=BC,CE=CD,∠ACB=∠ECD=60°所以∠ACE=BCD所以△ACE≌△BCD(SAS)所以∠CAE=∠CBD根据“三角形任
AEC≌BEC≌ADCADG≌AEGADE≌FCECEG≌CEG
过A点做BC垂线,即是三角形ABC的高H过D点做BC垂线,即是三角形DEC的高h因为AD=BD,所以D是AB中点所以H=2h因为CE=BE所以E是中点所以BC=2EC三角形ABC的面积=BC*H/2=
等边△ABC和等边△DCE∴∠ACB=∠DCE=∠ABC=∠ECD=60°在△ACE与△BCD中∵∠ACB=∠ECD⇒∠ACB-∠ECB=∠ECD-∠ECB⇒A
图中点B.C.D三点在同一)直线上则AD和BE的大小关系时(相等)他们所成的∠AFB=(角EFD)
答:CGF为等腰三角形,CG=CF;证明:三角形BCD全等于△ACE,角BDC=角AEC;△BDG全等于△CEF;CG=CF;△CGF为以GF为底的等腰三角形.再问:BDG不是在一条直线上么。。再答:
AF:FH=三角形AFG和三角形FGH面积之比(二者同高)AFG面积=20+22+23+24+28=117,FGH面积为26所以AF:FH=117:26,AEF和EFH面积之比为AF和FG之比(二者同
1):证明△ADC与△BCE全等,所以AM=BN2):用相同的方法证明三角形全等,因为有两个等边三角形,所以肯定有相等角为60°,所以可以证明三角形MNC是等边三角形
E如果比F临近A,三角形面积为36E如果比F临近C,三角形面积为18
三角形CDE面积是10平方厘米,因为E是BC的中点,所以三角形CDE面积是三角形BCD一半,所以三角形BCD一半为20平方厘米,因为D是AB的中点,所以三角形BCD的面积是三角形ABC的一半,所以三角
解题思路:本题目主要考查三角形全等以及等边三角新换的性质和运用解题过程: