已知二元函数z=y^2x,求偏导数az ax和az ay
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 23:44:37
求全微分一般有三种解法:1.直接求偏导法等式两边同时对x求偏导(此时z看成是关于x的多元函数,y看成常量),化简得出z对x的偏导;同理可得z对y的偏导.最后dz=(z对x的偏导)*dx+(z对y的偏导
这样:Z=X.*Y; %使用点乘mesh(X,Y,Z) 结果如图:看看是不是你想要的,有问题请进一步提出.再问:好吧我又2了。。。。再问一下,,
先对x求导y*dz/dx+z+x*dz/dx+y=0所以dz/dx=-(z+y)/(x+y)同理得dz/dy=-(z+x)/(x+y)所以dz=-(z+y)/(x+y)dx-(z+x)/(x+y)dy
你这个条件只能求得:记u=x/y,则有∂u/∂x=1/y,∂u/∂y=-x/y²则z=f(u)∂z/∂x=∂
对z求偏倒数:z关于x的偏倒数为:2xz关于y的偏倒数为:2y由2x=2y=0得x=y=0再根据它的黑塞矩阵正定,可知它是极小值点中间是乘还是平方?如果是乘的话:z关于x的偏倒数为:xz关于y的偏倒数
求二元函数全微分z=f[x²-y²,e^(xy)]设z=f(u,v),u=x²-y²,v=e^(xy)则dz=(∂f/∂u)du+(
设a=xy,b=x+y.f(xy,x+y)=x^2+y^2+2xy-2xy=(x+y)^2-2xy把a,b带f(a,b)=b^2-2a所以f(x,y)=y^2-2x同理f(x+y,xy)=x^2+y^
求偏导时就是把其他变量当做常数.所以,对x的偏导为y*x^(y-1),对y的偏导是x^y*lnx.
【俊狼猎英】团队为您解答~题目写错了吧,应该是确定了z=z(x,y)其实很简答,先把f(y/x,z/x)=0两边求偏导就可以了,其实就是隐函数求导转化先对x求偏导,得到f'1*(-y/x^2)+f'2
∂z/∂x=cos(x-y)∂z/∂y=-cos(x-y)dz=∂z/∂x*dx+∂z/∂y*dy=co
z=x^y,lnz=ylnx;(1/z)∂z/∂x=y/x,∂z/∂x=yz/x=yx^(y-1);(1/z)∂z/∂y=lnx
两边求微分就行了2cosx*sinx*dx+2cosy*siny*dy+2cosz*sinz*dz=0dz=-(2cosx*sinx*dx+2cosy*siny*dy)/2cosz*sinz
dz/dx=dz/du*(du/dx)=2u*1=2udz/dy=dz/du*(du/dy)=2u*1=2u和v没关系
令F(x,y,z(x,y))=x^2+y^2+z^2-xyz-2则dz/dx=-Fx/Fz=-(2x-yz)/(2z-xy)2)令F(x,y,z(x,y))=x+siny+yz-xyz则dz/dx=-
求二元函数全微分z=f[x²-y²,e^(xy)]设z=f(u,v),u=x²-y²,v=e^(xy)则dz=(∂f/∂u)du+(
2zdz+zdy+ydz=-sinydx-xcosydydz=[-sinydx-(xcosy+z)dy]/(2z+y)再问:不是先等式两边同时对x求偏微分再对y求偏微分吗?再答:偏微分和全微分的概念不
由3x-y+z=0得z=y-3x代入x+2y-4z=0得13x-2y=0则y=13/2x代入z=y-3x则z=7/2x2x:4y:5z=4:52:35
z=x²ye^y那么∂z/∂x=2xye^y∂z/∂y=x²e^y+x²ye^y所以二阶偏导数为∂²