已知任意一个4维向量都可由向量线性表示,则t=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 04:37:32
证明:设a为任一n维向量.因为a1,a2,…,an,a是n+1个n维向量,所以a1,a2,…,an,a是线性相关的.又因为a1,a2,…,an线性无关,所以r(a1,a2,…,an,a)=r(a1,a
≥144.当且仅当t1=3,t2=4时取等号.∴|c-t1a-t2b|的最小值为12
已知任一n维向量都可由a1a2……an线性表示,故单位坐标向量组e1e2
因为OA向量减OB向量等于BA向量OC向量减OD向量等于DC向量而BA向量等于DC向量所以OA向量减OB向量等于OC向量减OD向量,即OA向量+OC向量=OB向量+OD向量祝楼主身体健康万事如意望采纳
错的因为零向量与人一向量平行
知识点:若A组可由B组线性表示,则R(A)
证明:因为e1,e2,e3.en线性无关,且任一向量都可由n维基本向量组e1,e2,e3.en线性表示由已知,a1,a2,a3...an与e1,e2,e3.en等价.而等价的向量组秩相同所以r(a1,
这个是定义啊.秩就是极大线性无关组包含的向量的个数.
向量组a1,a2,...,as的秩为r.,则向量组中任意r+1个向量都是线性相关的,由极大线性无关组的定义即得a1,a2,...as中任意r个线性无关的向量都构成它的一个极大线性无关组.
∵a+b‖c,a+c‖b,且a,b,c非零且互不平行∴可以设:a+b=nc,a+c=mb(n,m≠0)联立上两式,∵b=nc-a∴a+c=mb=m(nc-a)(mn-1)c=(m+1)a1、当:mn=
不一定是,显然如果abc同向就是了,如果不是,考虑一个三角形的三条边,令一条为a另一条为b,第三边的三分之一为c,则等式满足,但这时候ab显然不是平行的再问:但我们老师说这道题平行的呀?这该如何解释呢
1.因为向量a+向量b与向量c平行,所以a+b=k1*c(k1为常数)因为向量a+向量c与向量b平行,所以a+c=k2*b(k2为常数)a=k1*c-b=k2*b-c(k1+1)*c=(k2+1)*b
零向量可以认为是有任意方向的所以零向量与任意向量都平行也与任意向量都垂直
|BA-tBC|>=|AC|当且仅当t=-1时,|BA+CB|=|CA|又因为|BA-tBC|>=|AC|(同平方)得|BA|^2-2|BA||t||BC|cosabc+|t|^2|BC|^2>=|A
向量OA-向量OE=向量EA,向量OB-向量OE=向量EB,向量OC-向量OE=向量EC,向量OD-向量OE=向量ED,四式相加得证
E是AC和BD的中点.所以OA向量+OC向量=2OE向量OB向量+OD向量=2OE向量所以OA向量+OB向量+OC向量+OD向量=4OE向量
a(1,3),b(0,2),c(3,13).设a=bx+cy,即(1,3)=(0,2x)+(3y,13y)得1=0+3y,3=2x+13y,y=1/3,x=-2/3则a在b、c组成的基下表示为(-2/
是的两个零向量既垂直又平行
假设p为(a1,a2,a3,a4,...,an)既然对任意的实向量都正交,不妨取单位坐标向量(1,0,0,0,...,0)所以a1*1+a2*0+...+an*0=a1=0再取单位坐标向量(0,1,0