已知关于x的方程x2-(2k-1)x k的平方

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 23:52:50
已知关于x的方程x2-(2k-3)x+k2+1=0.

设f(x)=x^2-(2k-3)x+k^2+1f(0)=k^2+1>0所以方程的两根同号,即X1,X2同大于0或同小于0即x1+x2=3或x1+x2=-3x1+x2=2k-3所以k=3或0

已知关于X的方程X²-(2k-3)X+k²+1=0,若此方程的两实数根X1,X2满足:|X1|+|X

k²+1>0=>两根同号.=>x1+x2=3,-3=>2k-3=3,-3=>k=3,0k=3时,无实根.所以k=0再问:可以详细一点吗?看不太懂....再答:利用二次方程根与系数的关系x1*

已知关于x的方程x2-2(k-3)x+k2-4k-1=0.

(1)根据题意得4(k-3)2-4(k2-4k-1)≥0,解得k≤5,所以k的取值范围为k≤5;(2)设方程的两根分别为x1、x2,则x1•x2=k2-4k-1,∵方程两个根为横坐标、纵坐标的点恰在反

已知关于x的方程x2-2(k+1)x+k2+k-2=0有实数根.

(1)∵方程x2-2(k+1)x+k2+k-2=0有实数根.∴△=[-2(k+1)]2-4×(k2+k-2)≥0,即4k+12≥0,解得 k≥-3;(2)设原方程的两个根为x1,x2,根据题意得x1x

已知关于x的方程x2+3k+1

∵关于x的方程x2+3k+1x+2k-1=0有实数根,∴b2-4ac=(3k+1)2-4×1×(2k-1)=3k+1-8k+4=-5k+5≥0,且3k+1有意义,则3k+1≥0,∴k≤1,k≥-13,

已知关于x的方程4x2-(k+2)x+k-1=0有两个相等的实根,

(1)∵关于x的方程4x2-(k+2)x+k-1=0有两个相等的实根,∴△=(k+2)2-4×4(k-1)=0,∴k2-12k+20=0,∴k1=2,k2=10;(2)当k=2时,原方程变为4x2-4

已知关于x的方程x²-2(k-1)x+k²=0有两个实数根x1 x2,且/x1+x2/=x1x2-1

x1+x2=2(k-1)x1*x2=k2|2k-1|=k2-12k-1≥0,2k-1=k2-1k=2,0舍去0,k=22k-1<0,1-2k=k2-1k2+2k-2=0k=1-√3

已知关于x的方程x2-(k+1)x+2k-2=0

证明:∵△=(k+1)²-4(2k-2)=k²-6k+9=(k-3)²≥0∴无论k为何值,方程总有实根∵等腰三角形∴方程有两相等的实根,即△=0∴k=3原方程为:x

已知方程3x/x+1减去x+4/x2+x等于-2的解是k,求关于x的方程x2+kx=0的解

3x/(x+1)-(x+4)/(x^2+x)=-23x^2-(x+4)=-2(x^2+x)3x^2-x-4=-2x^2-2x5x^2+x-4=0(5x-4)(x+1)=0x1=4/5x2=-1经检验,

已知关于x的方程(2k+1)x2-4kx+(k-1)=0求k

这个方程怎么样啊.题目不完整啊

已知关于x的方程(k-1)x2+2kx+k+3=0.

(1)∵关于x的方程(k-1)x2+2kx+k+3=0有两个不相等的实数根,∴△=b2-4ac=(2k)2-4×(k-1)×(k+3)=4k2-4k2-8k+12=-8k+12>0…(1分)解得:k<

已知关于x的方程x2-2(k-1)x+k2=0有两个实数根x1,x2.

两个实数根和x1+x2=2(k-1)两个实数根相乘x1x2=k^2y=x1+x2-x1x2+1=2(k-1)-k^2+1=-k^2+2k-2+1=-k^2+2k-1=-(k-1)^2关于x的方程x2-

已知x1,x2是关于x的方程x2+2(k-1)x+k2=0的两个实数根,是否存在常数k,使1x

存在.根据题意得△=4(k-1)2-4k2≥0,解得k≤12,∵x1+x2=-2(k-1),x1•x2=k2,而1x1+1x2=32,∴x1+x2x1x2=32,∴−2(k−1)k2=32,整理得3k

已知关于x的方程x2-(2k+1)x+4(k-0.5)=0,

已知关于x的方程x2-(2k+1)x+4(k-0.5)=0,一求证:无论k取何值时,这个方程总有实根二若等腰三角形ABC的一边长为a=4,另两边长分别为b,c恰恰好是这个方程的两个根,求这个三角形的周

已知:关于x的方程x2+(k-2)x+k-3=0

(1)证明:△=(k-2)2-4(k-3)=k2-4k+4-4k+12=k2-8k+16,=(k-4)2,∵(k-4)2≥0,∴此方程总有实根;(2)解得方程两根为,x1=-1,x2=3-k,∵方程有

已知:关于x的方程(k-1)x2-2kx+k+2=0 有实数根.

(1)当k-1=0即k=1时,方程为-2x+3=0,x=32,即方程有实数根;当k-1≠0时,△=(-2k)2-4•(k-1)•(k+2)≥0时,方程有实数根,即k≤2,综合上述:k的取值范围是k≤2

已知关于x的方程(k-2)x2-kx=x2-1,当k为何值时方程为:

整理方程变形为:(k-3)x2-kx+1=0(1)根据一元二次方程的特点可知,当k-3≠0,即:k≠3时,是一元二次方程.(2)根据一元一次方程的特点可知,当k-3=0,即:k=3时,是一元一次方程.

已知关于x的方程(k-1)x的平方+(2k-2)x+k+1=0有两个不相等的实数根x1和x2

1、经求解知:4(k^2+2x+1)-4(k^2-1)=8k+8>0,得到k>-1;2、当[-(2k-2)+(8k+8)^0.5]=[-(2k-2)-(8k+8)^0.5]得到:k+1=-(k+1),

关于x的方程x2-3k

根据题意得k≥0且△=(-3k)2-4×(-1)≥0,解得k≥0.故答案为k≥0.

已知:关于x的方程x2-(k+2)x+2k=0;求证:无论k为任何实数值,方程总有实数根.

∵△=b2-4ac=[-(k+2)]2-4×2k=k2-4k+4=(k-2)2;∴△=(k-2)2≥0,∴无论k取任何实数时,方程总有实数根.