已知函数f(x)是定义在(0,无限大)上的减函数,则f(4分之3)与
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 02:20:35
g(x)=f(x)f(-x)g(-x)=f(-x)f[-(-x)]=f(-x)f(x)=g(x)所以f(x)f(-x)是偶函数h(x)=f(x)|f(-x)|h(-x)=f(-x)|f(x)||f(x
因为f(x)=f(2-x)得f(5/2)=f(2-5/2)=f(-1/2)因为函数f(x)是奇函数所以f(-1/2)=-f(1/2)1/2属于0
偶函数,当x>0时,f(x)为增函数,因此越靠近x=0的点其函数值越小故由f(2x)>f(3x-1)得:|2x|>|3x-1|得:(2x)^2>(3x-1)^2(5x-1)(-x+1)>0得:1/5
f(1)=1^2-1=0由奇函数得:f(-1)=-f(1)=0
解题思路:由题设条件,应用奇函数定义,求出函数F(x)的解析式.解题过程:
增函数所以x-1
1.f(1)=f(1/1)=f(1)-f(1)=0f(2)=f(4/2)=f(4)-f(2),f(4)=2f(2)=2f(4)=f(8/2)=f(8)-f(2),f(8)=f(4)+f(2)=3题目错
由f(xy)=f(x)+f(y)得f(x)+f(10-x)=f[x(10-x)]0即x²-10x+16
2x-1>x-1,==>x>0-1
因为函数f(x)是偶函数且在区间[0,2]上是增函数,那么在[-2,0]上是减函数.设1-m大于1+2m因为f(1-m)>f(1+2m),所以2>1-m>1+2m>0这么设(它是在[0,2]上是增函数
∵f(xy)=f(x)+f(y),f(2)=1,∴f(2)+f(2)+f(2)=3,f(8)=3,由f(xy)=f(x)+f(y)可推出f(x/y)=f(x)-f(y),所以f(x)-f(x-2)=f
1(1),有f(xy)=f(x)+f(y)令x=y=1,则f(1)=f(1)+f(1),即f(1)=2f(1)∴f(1)=0(2),f(x)是定义在(0,+∞)上的函数∴x>0,2-x>0∴x∈(0,
f(1)=f(1/1)=f(1)-f(1)=0f(xy)=f(x/(1/y))=f(x)-f(1/y)=f(x)-[f(1)-f(y)]=f(x)+f(y)f(36)=f(6*6)=f(6)+f(6)
由题意,xf'(x)-f(x)>0,即(xf(x))'>0,即函数y=f(x)/x在x>0上为增函数.又y=x在x>0上为增函数,则函数y=f(x)=(f(x)/x)*x在x>0为增函数.于是由f(1
解.令x=y=2,则f(4)=f(2)+f(2)=2令x=4,y=2,则f(8)=f(4)+f(2)=3f(x)-f(x-2)>=3=f(8)即f(x)>f(x-2)+f(8)=f(8x-16)因f(
(1)y=1时f(x)=f(x)+f(1)f(1)=0(2)设x1>x2则x1/x2>1因当x>1时,f(x)>0所以f(x1/x2)>0f(x1)=f(x2*x1/x2)=f(x2)+f(x1/x2
A={x|(x-2)/(x-1)
解题思路:抽象函数利用单调性解不等式解题过程:-最终答案:略
/>需要考虑3件事情(1)f(x-2)有意义-1≤x-2≤11≤x≤3(2)f(1-x)有意义-1≤1-x≤10≤x≤2(3)f(x)是增函数f(x-2)
1,令x=y=1,则f(1)=f(1)-f(1),所以f(1)=0;2,f(38x-108)+f(1/x)