已知函数fx=(x-1)lnx-(x-a)2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 20:44:39
已知函数fx=ax-b/x-2lnx,f(1)=0.

易求得a=b=1,f'(x)=1+1/x^2-2/xa(n+1)=a(n)^2-2na(n)+1再数学归纳法证明...

已知函数fx)=lnx+a/x,若f(x)

设g(x)=x^2-f(x)求g'(x)=2x-1/x+a/x^2通分有g'(x)=(2x^3-x+a)/x^2考虑其在(0,+∞)上单调性若2x^3-x+a>=0则g(x)最小值满足g(x)>0即可

已知函数fx=x^2/2+lnx 求fx在区间(1,e)上的最大值最小值

1先对f(x)求导,它在(1,e)上递增2构造一个函数F(x)=g(x)-f(x),再对F(x)求导,可得到F(x)在区间内递增,即只需证明F(1)>0即可

已知函数fx=ax^2+lnx

fx=-1/2x²+lnx,显然x>0f'x=-x+1/x=(1-x²)/x令f'x1所以,fx在(1,+无穷)上单调递减fx在(0,1)上单调递增在(1/e,e)上,f(x)ma

已知函数fx=x+ax-lnx,当a=1时,求fx的单调区间

fx的导数=1+a-1/x,把a=1带入,原式=2-1/x当2-1/x>0即x>1/2或x再问:嗯嗯再答:采纳一下吧,纯手打,谢了再问:呵呵。、不错

设函数fx=a(x-1/x)-lnx

先得切点(1,0) 在对f(x)求导f'(x)=(x^2-x+1)/x^2  得斜率k=1l :y=x-1求导得f'(x)=(ax^2-x+a)

已知函数fx =(x-a)lnx

fx=(x-a)lnxf'(x)=lnx+(x-a)/x函数在(0,+无穷)上为增函数∴f'(x)=lnx+(x-a)/x>=0lnx+1-a/x>=0lnx+1>=a/x∵x>0∴xlnx+x>=a

已知定义在(1,+¤¤)上的函数fx=lnx/(x-1)

g(x)=(x-1)f(x)+a/x=lnx+a/xx>1g'(x)=1/x-a/x^2=(x-a)/x^2若a≤1,则x-a>0,g'(x)=(x-a)/x^2>0,g(x)在定义域x>1严格单调递

已知函数fx=lnx+(1/x)-1 (1)求函数fx的单调区间

求导让导数等于零让后解方程注意x要大于零不符合的解舍掉让后在(0,+无穷)上根据导数的正负情况讨论增减区间.

已知函数fx=px-p/x-2lnx

令hx=fx-gx,x在[1,e]上hx恒小于0则hx=px-p/x-2lnx-2e/xh'x=p+p/x^2-2/x+2e/x^2=p(1+1/x^2)+(2e-2x)/x^2因为p>0,x在[1,

已知函数fx=x-lnx在x=1处取得极值

=fx+2x-x2令g(x)=f(x)+2x-x^2=3x-x^2-lnx则x>0g'(x)=3-2x-1/x3-2x-1/x=0可得x=1/2或x=1则g(x)在(1/2,1)上单调增,在(0,1/

已知函数fx=x+a^2/x-3,gx=x+lnx,其中a>0,Fx=fx+gx

1.先对Fx求导,由题意知F`(1/2)=0可得出a的值2.由F`(x)=2a^2,再根据x的范围可解

已知函数fx=x方+ax,gx=lnx,若函数y=fx-gx在【1,2】上是减函数,

答:f(x)=x^2+ax,g(x)=lnxy=f(x)-g(x)=x^2+ax-lnxy'=2x+a-1/x因为:y''=2+1/x^2>0所以:y'=2x+a-1/x是增函数y在[1,2]上是减函

已知函数fx=lnx-a(x-1) 1、fx的单调性.

函数的定义域(0,+oo),f'(x)=1/x-a;当a

已知函数fx=lnx-ax2+(2-a)x 讨论fx单调性.

f(x)=lnx-ax²+(2-a)x,x>0f′(x)=1/x-2ax+2-a=[-2ax²+(2-a)x+1]/x=(2x+1)(1-ax)/x=(2+1/x)(1-ax)因为

已知函数fx=lnx+2a/x+1

1、对lnx知,x>0对f求导得:f'=1/x-2a/(x^2)f'>=0时,x>2a如果a0,无单减区间如果a>=0,则f的单增区间为x>=2a,此时单减区间为0

已知函数fx=lnx-ax(x>1)求fx单调区间

f'(x)=1/x-ax>1,所以00即证umin(a)=u(1/e)=x/lnx-lnx+x/e-2>0恒成立.令t(x)=x/lnx-lnx+x/e-2(x>1)令t'(x)=(lnx-1)/ln

已知函数 fx=2x×lnx-1 求函数fx的最小值及fx在点(1,f1)处的切线方程

1.f(x)=2xlnx-1,f‘(x)=2(lnx+1),令f‘(x)=0,得x=1/e,f“(x)=2/x,f“(1/e)=2e>0,所以x=1/e为极小点,极小值=f(1/e)=(-2/e)-1