已知函数fx=2sin(x π 6) a的最大值为1
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 06:27:17
f(x_=(cosx+sinx)(cosx-sinx)=cos²x-sin²x=cos2x所以T=2π/2=πf(α/2)=cosα=1/3sin²α+cos²
(1)f(x)=2sin(2x+π/3)+2由2x+π/3=kπ+π/2,k∈Z得2x=kπ+π/6,k∈Z对称轴方程为x=kπ/2+π/12,k∈Z(2)g(x)=f(x)+m=2sin(2x+π/
f(x)=sin(2x+π/6)+2cosx^2-1=sin(2x+π/6)+cos2x=√3/2*sin2x+1/2*cos2x+cos2x=√3/2*sin2x+3/2*cos2x=√3*(1/2
fx=2sin(2x+pai/6)振幅A=2最小正周期T=2pai/2=paix∈【0,pai/]2xE[0,2pai]2x+pai/6E[pai/6,2pai+pai/6]很明显,设u=2x+pai
周期等于2派.g(x)=2sinx;基函数再问:有过程吗??再答:这可以看出来,还要过程吗,,,,周期等于2派/x前的数1===2派;;g(x)=2sint(x+pi/3+p1/3)=2sinx;si
1.f(x)=根号3/2sin2x+1/2cos2x+2sin²x=根号3/2sin2x+1/2cos2x+1-cos2x=根号3/2sin2x-1/2cos2x+1=sin(2x-π/6)
1)a=π/3,2x+π/6∈[-π/6,5π/6],从而f(x)∈[-1/2,1];再答:2)因为若f(x)的值域是[-1/2,1],所以2x+π/6∈[-π/6,7π/6],从而x∈[-π/6,π
已知函数fx=sin(2x+π/6)+sin(2x-π/6)+2cos^2x(x属于R)1.求函数fx的最大值及此时自变量函数x的取值集合2.求函数fx的单调递增区间3.求使fx≥2x的x的取值范围(
f(x)=cos(2x-π/3)+2sin(x-π/4)sin(x+π/4)=cos(2x-π/3)+2sin(x-π/4)cos[π/2-(x+π/4)]=cos(2x-π/3)+2sin(x-π/
(1)f(x)=[cos(x-π/6)]^2-(sinx)^2f(π/12)=(cos(π/12))^2-(sin(π/12))^2=cos(π/6)=√3/2(2)f(x)=[cos(x-π/6)]
x∈[-π/12,π/2]2x∈[-π/6,π]2x-π/6∈[-π/3,5π/6]sin(2x-π/6)∈[-√3/2,1]2sin(2x-π/6)∈[-√3,2]值域是[-√3,2]
f(x)=2sin(x-π/6)cosx+2cos²x=(2sinxcosπ/6-2cosxsinπ/6)cosx+2cos²x=√3sinxcosx-cos²x+2co
f(x)=(1+1/tanx)*(sinx)^2-2sin(x+π/2)sin(x-π/4)=(1+cosx/sinx)*(sinx)^2+2sin(x+π/4)cos[(x-π/4)+π/2]=(s
第一题A.第二题B
你的分析前一半是对的,一直到“那么2x的单调增区间是[-4分之π,4分之π]”.2x的单调递增区间是[-π/2,π/2],x的才是[-π/4,π/4].所以函数在x=-π/3处取得最小值为-2分之根号
(1)fx=sin(2x+φ)经过点(π/12,1)sin(π/6+φ)=1∴π/6+φ=π/2+2kπ,k∈Z∴φ=π/3+2kπ,k∈Z∵0
解答;f(x)=sin(2x+3分之π)∴sin(2x+π/3)=-3/5∵x∈(0,π/2)∴2x+π/3∈(π/3,4π/3)∵sin(2x+π/3)
解1当2kπ-π/2≤2x+π/3≤2kπ+π/2,k属于Z时,y是增函数即2kπ-5π/6≤2x≤2kπ+π/6,k属于Z时,y是增函数即kπ-5π/12≤x≤kπ+π/12,k属于Z时,y是增函数
f(x)=sin(2x+π/6)-cos2x+1所以为2π/2=πf(x)=根号3/2sin2x-(cos2x)/2+1=sin(2x-π/6)+1所以最大值为2,x=π/2+2kπ-π/6=π/3+