已知函数fx=ln(ax 1) 2 x 1-1若函数g(x)=1 3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 17:35:08
记u=x+√v,v=x^2+1v'=2xu'=1+v'/(2√v)=1+2x/(2√v)=1+x/√v则f(x)=lnuf'(x)=u'/u=(1+x/√v)/u=(x+√v)/(u√v)=1/√v=
已知函数fx=ln(x)-ax(a∈R)1.当a=2时,求fx单调区间.2.当a>0时,求fx在[1,2]上最小值(1)解析:∵函数fx=ln(x)-ax(a∈R)令a=2,则函数fx=ln(x)-2
证明:任取R上的x1,x2,且x12,所以f(x2-x1)>2,f(x2-x1)-2>0所以f(x2)-f(x1)>0所以f(x1)
解析如下:f′(x)=x(1-a-ax)x+1,x∈(-1,+∞).依题意,令f'(2)=0,解得a=13.经检验,a=13时,符合题意.…(4分)①当a=0时,f′(x)=xx+1.故f(x)的单调
对函数求一次导,令其大于0,即1/(2-x)+a>0,a>1/(x-2)1/ax-2的最小值为-2,但取不到所以1/a
fx=-1/2x²+lnx,显然x>0f'x=-x+1/x=(1-x²)/x令f'x1所以,fx在(1,+无穷)上单调递减fx在(0,1)上单调递增在(1/e,e)上,f(x)ma
已知函数f(x)=ln(ax+1)+(1-x)/(1+x),x>=0,其中a>0,(1)求f(x)的单调区间(2)若f(x)的最小值为1求a的取值范围f′(x)=[a/(a+1)]-[2/(1+x)&
-10f(x)单调递增,所以f(x)的最小值=f(0)=1.0=f(0)=1f(x2-x1)=e^(x2-x1)-ln(x2-x1+1)>1,即e^(x2-x1)>1+ln(x2-x1+1),又x2-
1)因为√(x^2+1)>|x|,所以x+√(x^2+1)恒大于0所以定义域为R2)f(-x)=ln[-x+√(x^2+1)]=-ln1/[-x+√(x^2+1)]=-ln[√(x^2+1)+x]/[
(2)f(x)=x-(x+1)ln(x+1)f'(x)=1-ln(x+1)-1=-in(x+1)令f'(x)=0-ln(1+x)=0得x=0f’(x)为递减函数在(-1/2,0)f'(x)>0在(0,
因为函数为奇函数,因此f(0)=0,由于x<0时f(x)=ln[1/(1-x)],所以x>0时,f(x)=-f(-x)=-ln[1/(1+x)]=ln(1+x),图像如图
首先:(1)f(-1)=a-b+1=0b=a+1从f(-1)=0,f(x)的值都是正的,可以得到抛物线一定是开口向上的,所以a>0.又:f(x)=ax^2+(a+1)x+1=a(x^2+[(a+1)/
fx=ln(1+x)-ln(1-x)则f(x)的定义域即为1+x>01-x>0解得-11x>0综合定义域可知x的范围是(0,1)
1.先对Fx求导,由题意知F`(1/2)=0可得出a的值2.由F`(x)=2a^2,再根据x的范围可解
奇函数然后取fx2–fx1再答:谢谢。
定义域x>-1f'(x)=1/(x+1)+a由题意,f'(x)>=0对于任意x>-1恒成立a>=-1/(x+1)恒成立令g(x)=-1/(x+1)(x>-1)显然g(x)=0
第一题A.第二题B
y=3x-1再问:完整点?再答:
解1当2kπ-π/2≤2x+π/3≤2kπ+π/2,k属于Z时,y是增函数即2kπ-5π/6≤2x≤2kπ+π/6,k属于Z时,y是增函数即kπ-5π/12≤x≤kπ+π/12,k属于Z时,y是增函数