已知函数fx等于e的x次方分之x加c
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 15:25:42
因为f(x)是偶函数,所以f(-1)=f(1),代入就可以求出a了!
f(x)=(e的x次方)/(x-1)切点是(0,-1)且:f'(x)=[(x-2)e的x次方]/(x-1)²切线斜率是k=f'(0)=-2切线方程是:y=-2x-1函数f(x)在(-∞,1)
求导f·x=e的x次方+2x-3令导函数=0不好解令gx=的x次方+2xhx=-3显然,一个是增函数,一个是常函数且只有一个交点,但是不在(0,1)范围内因为g0=1>-3所以在范围内没有极值点
加一分之一?f(x)是奇函数,就可以得到f(0)=0你把这个x=0带入就可以啦再问:好吧,谢谢你再答:如果这个方法不行,就用f(-x)=-f(x)一般都可以解决
(1)因为f(X)为R上的偶函数,所以f(1)=f(-1)代值即e/a+a/e=1/(ae)+ae解得a=1或-1因为a大于0,所以a=1(2)f(X)=e的x次方+e的x次方分之一任取x2>x1≥0
麻烦图重发,清楚点再问:谢谢不用了知道怎么做了再答:再答:采纳啊
e^z-xyz=0对x求导əz/əx=(z'x)e^z-yz-xy(z'x)//z'x表示z对x的导数,下同对y求导əz/əy=(z'y)e^z-xz-xy(z
因为f(x)=ax²-e^x所以f′(x)=2ax-e^x(1)当a=1时,f′(x)=2x-e^x所以f″(x)=2-e^x当x>ln2时,f″(x)0时令f′(x)=2ax-e^x=0得
f'(x)=1*e^x+(x-k)*e^x=(x-k+1)*e^x显然e^x>0所以看x-k+1的符号f'(x)>0递增,f'(x)
高几的题啊再问:��1��再答:再答:����再问:���ˣ�лл再答:û�£�����������ĩ����Ҳ�ڸ�ϰ
f(x)=x/e^xf'(x)=(e^x-xe^x)/e^(2x)=(1-x)/e^x令f'(x)=0得:x=1当x
答:f(x)=(e^x)sinx+f'(0)x∈(0,π/2)因为:f'(0)是常数所以对f(x)求导得:f'(x)=(e^x)sinx+(e^x)cosx令x=0得:f'(0)=0+1=1所以:f(
f(x)的值大于并等于二分之一再答:对不起我看错了,应该是求x的范围再答:再问:谢了再答:不用再答:有不会的题目尽管找我,我是复读生,我需要锻炼!不过帮不上忙的话请不要x我喔!哈哈
再答:方程是这样吗?再问:不是哦再答:好,你等下。再问:再答:先来两问。再答:再答:再答:第三问我之前想复杂了…orz让你久等sorry啊再问:没事,谢啦,你真是一好学生。。。
f'(x)=e^x·(x²-3x+2)=e^x·(x-1)(x-2),当x∈(1,2)时,f'(x)<0,所以f(x)单调递减,即单调递减区间是(1,2)单调递增区间是(-∞,1),(2,+
已知函数fx是偶函数,当x大于等于0时.fx=x的三分之一次方(1)试写出函数fx的关系式(2)讨论函数fx的单调性(1)解析:∵函数fx是偶函数,当x大于等于0时.fx=x的三分之一次方∴f(-x)
1、g(x)=x+e^2/x>=2e,在x=e时取等号.(x>0)故m>=2e时,函数有零点.2、直接画图,g(x)是对勾函数,在x=e时,有最小值,f(x)是以x=e为对称轴的,开口向下的抛物线,这
再问:上面的很好,我这个对吗?再答:你这个利用导数表示斜率,利用图像性质分析可以,但是具体考试的时候,答卷上不让画图的,当然如果你不嫌做题时间太长也可以这样利用斜率描述性质;这道题目是反证法的应用;反
只需(4-k*2的x次方)>0,即4>k*2的x次方对k讨论,若k=0,则,定义域为R若k>0则变为,4/k>2的x次方两边取对数即为ln(4/k)>xln2即为(ln(4/k))/(ln2)>x若k
定义域是Rf(-x)=(2^-x-1)/(2^-x+1)=(1-2^x)/(1+2^x)=-(2^x-1)/(2^x+1)=-f(x)所以f(x)=(2^x-1)/(2^x+1)是奇函数