已知分别是△abc中边的中点四边形decf是菱形判断△abc是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:47:50
已知D,E,F分别是三角形ABC中BC,CA,AB边的中点四边形DECF是菱形求证三角形ABC是等腰三角形

因为四边形DECF为菱形所以DE=CE=CF=DF因为D,E,F为三角形各边中点所以DE,DF为三角形中位线所以DE=1/2AC,DF=1/2BC因为DE=DF所以AC=BC所以三角形ABC为等腰三角

已知:D,E,F分别是△ABC中BC,CA,AB的中点,P是平面内任一点,

延长PF到K,使PA,PB,AK,BK组成平行四边形有PA+PB=2PF同理PB+PC=2PDPA+PC=2PE三等式相加得到2(PA+PB+PC)=2(PD+PE+PF)====>PA+PB+PC=

已知def分别是三角形abc中abbcca边的中点,四边形decs菱形

题目应该是decf是菱形吧?再问:四边形decf是菱形,求证,三角形是等腰三角形。再答:上面的解法已经给你了呢·证明得到ac=bc∴是等腰三角形再答:不客气··很高兴能帮到你··希望及时采纳^^

已知:点D,E,F分别是△ABC中AB,BC,CA边的中点,四边形DECF是菱形,求证:△ABC是等腰三角形.

证明:∵点D,E,F分别是△ABC中AB,BC,CA边的中点,∴DE、DF是△ABC的中位线,∴AC=2DE,BC=2DF,∵四边形DECF是菱形,∴DE=DF,∴AC=BC.

如图,已知:△ABC中,BD、CE分别是AC、AB边上的高,G、F分别是BC、DE的中点.

(1)FG垂直平分DE,  证明:连接GD、GE.∵BD是△ABC的高,G为BC的中点,∴在Rt△CBD中,GD=12BC,(直角三角形斜边上的中线等于斜边的一半)同理可得GE=1

已知,如图:在锐角△ABC中,AD,BE分别是△ABC的两条高,F为BC中点.试说明DG+GF=FC

(应该加上“AD=BC”和“AD、BE交于G”的条件结论才成立)证明:因为AD、BE是高所以AD⊥BC,BE⊥AC所以∠CAD+∠C=∠CBE+∠C=90°所以∠CAD=∠CBE因为∠ADC=∠BDG

如图,在△ABC中,CG是AB上的高,D,E,F分别是AC,BC,AB的中点.已知AC=13,AG=5,AB=18,求四

首先勾股定理CG=12(自己算吧)DEEF分别平行且等于底边ABAC的一半即DE=9EF=6.5同理  DE垂直于CG  能知道CD=DG=AC*1/2=6.5AF=1/2*AB=9GF=AF-AG=

已知,D E F分别是△ABC中AB BC CA边的中点,四边形DECF是菱形,求证:△ABC是等腰三角形

四边形DECF是菱形所以DF=FC=CE=DE又因DF,DE为中位线所以DF=EC=1/2BCDE=FC=1/2AC所以DE=DF=1/2BC=1/2AC所以BC=AC

已知四棱锥p-abcd中,底面abcd为菱形pa⊥平面abcd,∠abc=60度,e,f分别是bc,pc的中点

\x0d\x0d\x0d\x0d在PAD平面,过A作AH'垂直PC于H'.连接AE、AH'、EH'\x0d提示:\x0d棱形∠ABC=60.所以EA⊥AC.设棱形边为a,则:AE=√3*a/2.\x0

如图,已知点EF,分别是ABC△中ACAB,边的中点,BECF,相交于点G

EF是中位线,EF平行于BC再问:请问这是什么性质,我不记得了再答:中位线定理,三角形的中位线平行于第三边并且等于它的一半

在△ABC中,点D、E、F分别是BC、AD、BE的中点,已知S△ABC=8cm²,求阴影部分的面积.

本题主要运用同底等高三角形面积比等于底边长比的知识∵AD是BC边上的中线∴BD=BC/2∴S△ABD=S△ABC/2=8/2=4∵E是AD边上的中线∴DE=AD/2∴S△BDE=S△ABD/2=4/2

已知如图在△ABC中,D、F、E分别是各边中点,AH是边BC上的高.

E、F是所在边中点,所以EF//BC三角形AHB是直角三角形且F是AC中点,则FH=1/2AB=FB又D、E是所在边中点,所以DE=1/2AB且DE//FB所以DE=HF且DE不平行于FH由DE不平行

已知:如图,在△ABC中,∠BAC=90°,D,E,F分别是BC,CA,AB边的中点.求证AD=EF

直角三角形中,斜边的中线等于斜边的一半,所以AD=1/2BC根据三角形中位线的性质,得到EF=1/2BC所以AD=EF

已知,在△ABC中,D、E、F分别是边BC、CA、AB的中点,求证四边形AFDE的周长等于AB+AC

证明:∵D,E,F分别是BC,CA,AB的中点,∴AF=AB/2,AE=AC/2,∴DF,DE是三角形ABC的中位线,∴DF=AC/2,DE=AB/2∵四边形AFDE的周长=AF+DF+AE+DE,∴

已知:如图,在△ABC中,BE、CF是高,D、G分别是BC、EF的中点

∵在△ABC中,BE,CF是高∴∠BFC=∠BEC=90°∵D是BC的中点∴DF=½BC=DE(直角三角形斜边上的中线等于斜边的一半)∵G是EF的中点∴DG⊥EF﹙等腰三角形三线合一性质)明

已知△abc中,b,e,f分别是ab,bc,ac的中点,△abc的周长为18cm,求△def的周长

如图所示,d、e、f分别为ab、bc、ac的中点,所以df∥bc,所以△adf和△abc是相似三角形,所以df:bc=ad:ab,即df:bc=1/2,所以df=bc/2,同理,de=ac/2,ef=

已知:如图,在△ABC中,D,E分别是边AB,AC的中点,M是DE的中点(1)求AN:CN的值(2) 连接DN,

1、没有图,无法正确解答2、D是AB中点,三点一线,怎么还有∠ABD?

如图,已知等边三角形ABC中,D,E分别为AC.BC的中点,连接BD以BD为边做△BDF求证四边形AFBE是矩形

因为等边三角形ABC、BDFBE=BD,BA=BC,∠FBD=∠ABC=60所以∠FBA=∠DBC所以△FBA≌△DBC因为D、E分别是AC、BC的中点所以BD⊥AC,AE⊥BC,BD平分∠ABC所以

已知:如图,在△ABC中,D、E、F分别是各边的中点,AH是边BC边上的高 求证:∠DHF=∠DEF

D、E、F分别是各边的中点,所以DE//AF,AD//FE,所以∠DAF=∠DEF连结DF,AH是边BC上的高,所以AD=DH,AF=HF,所以△ADF全等△DHF,所以∠DHF=∠DAF所以∠DHF

三角形abc中,内角A,B,C对边的对边分别是abc,已知abc成等比数列,且cosB等于四分之三

(1)由已知a,b,c等比,所以b²=ac.由余弦定理:b²=a²+c²-2ac*cosB,ac=a²+c²-2ac(3/4),即2a