已知四边形abcd为正方形,ED等于EC,求证三角形EDC为等边三角形

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 13:58:58
如图所示,四边形ABCD是一个正方形.E,F分别为CD和BC边上的中点.已知正方形ABCD的边长是30厘米,那

设O是CF,AE交点,则O是⊿BCD的重心.AO/AE=2/3阴影面积=S⊿ABC+S⊿AOC=S⊿ABC+(2/3)S⊿ACE=S⊿ABC+(2/3)(1/2)S⊿ACD=S⊿ABC+(1/3)S⊿

如图,已知四棱锥P-ABCD中,底面四边形为正方形,侧面PDC为正三角形,且平面PDC⊥平面ABCD,E为PC中点.求

∵平面PDC⊥平面ABCDCD为交线BC⊥交线CD∴BC⊥面PDC∵DE属于面PDC∴BC⊥DE∵△PDC为正三角形E为PC中点∴DE⊥CE∵CE交BC于点C∴DE⊥面BCE∴DE⊥BE∴∠BEC即为

已知四边形ABCD是边长为4的正方形,E,F分别是边AB,AD的中点,GC垂直于正方形ABCD所在的平面,GC=2,则点

d,取EF中点M,取ABCD中点H,做HI垂直于面EFG交EFG于点I,则HI为所求,易得M,I,G共线,在三角形GCM内部利用三角形相似可得HI,即所求

如图已知四边形ABCD是边长为2的正方形以对角线BD为边

① EF=AF.证明: 如图,过E作BA的延长线的垂线EG,垂足为G.已知 EF^2+(FA+2)^2=ED^2=(2*2^1/2)^2   

已知四边形ABCD是边长为6的正方形,E为AB的中点,点F在BC上,且BF:FC=2:1AF与EC交于点P,求四边形AP

以A为原点,建立直角坐标系,B(6,0),C(6,6),D(0,6),E(0,3),F(6,4)AF方程:y=2x/3,EC方程:y=2x-6,P为二直线交点,x=9/2,y=3,P点坐标(9/2,3

已知四边形ABCD是边长为4的正方形

解题思路:利用等腰三角形性质解题过程:见附件最终答案:略

已知ABCD是边长为6的正方形.E、F为DC、BC的中点.求四边形ABGD的面积.

连CG.有向个同底等高的三角形呢.以下直接用字母表示相应图形的面积有DEG=CGE=CGF=GFBADGB=ADCB-ECB-DEG=6*6-3*6/2-(3*6/2)/3=24

四边形ABCD是一个正方形(如图),E,F分别为CD和BC边上的中点,已知正方形ABCD的边长是30厘米.图中阴影部分的

你的图不是很清楚若设BE与DF交与MS△BMC=S△DFC=1/2*30*15=225平方厘米因为E,F分别为DC,BC中点所以S△MFB=S△FMC=S△ECM=S△DEM所以S△BMF=1/3S△

数学;已知四边形ABCD为正方形,点E在边DC上,连接BE,以BE为底边作等腰直角三角形BEF,连接AF

连BD.(1)由△BEF是等腰直角三角形,∴∠FBE=45°,BE=√2BF,由△DAB是等腰直角三角形,∴∠ABD=45°,BD=√AB,∴AB:BF=BD:BE.①(2)由∠ABF=∠DBE,由①

如图,已知四边形ABCD、AEFG均为正方形,∠BAG=α (0°

线段BD、DE、EG、GB所围成封闭图形的面积为S.S=3*3/2+2*2/2+(3*2sina)/2+[3*2sin(180-a)]/2=4.5+2+6sina

如图 四边形ABCD为正方形 E是CF上一点 若四边形ABCD是菱形 求∠EBC

∠EBC=15°很高兴为您解答,祝你学习进步!有不明白的可以追问!如果您认可我的回答,请选为满意答案,谢谢!

已知四棱锥pabcd中,底面四边形为正方形,侧面pdc为正三角形,且pdc⊥abcd,e为pc中点.

证明:(1)连接AC交BD于点O,连接EO因为:ABCD是正方形所以:AC⊥BD,点O是AC的中点因为:点E是PC的中点所以:EO是三角形APC的中位线所以:EO//AP又因为:EO是平面APC和平面

四边形EFGH是正方形ABCD的内接四边形,已知EG=3,FH=4,四边形EFGH的面积为5,求正方形ABCD的面积.

在正方形ABCD中,过E、F、G、H分别作对边的垂线,得矩形PQRT.设ABCD的边长为a,PQ=b,QR=C,由勾股定理得b=√(3²-a²),c=√(4²-a&sup

已知:如图,在矩形ABCD中,BE平分∠ABC,交AD于点E,EF⊥BC,垂足为F.求证:四边形ABFE是正方形

显而易见矩形ABCD四个角都是直角,BE平分∠ABC,得到两个角都是45°所以三角形ABE就是等腰直角三角形,所以AE=AB然后EF⊥BC,ABFE四个角又都是直角,而且邻边相等所以是正方形得证

四边形EFGH是正方形ABCD的内接四边形,已知EG=3,FH=4,四边形EFGH的面积为5,求正方形ABCD的面积.具

在正方形ABCD中,过E、F、G、H分别作对边的垂线,得矩形PQRT.设ABCD的边长为a,PQ=b,QR=C,由勾股定理得b=√(3²-a²),c=√(4²-a&sup

已知四边形ABCD是正方形,将点B折到AD边上的中点E处,折痕为MN,求AM:AE:ME.

设正方形的边长为2a;AB=2a;AE=a;根据勾股定理;BE^2=AB^2+AE^2=5a^2;BE=√5a;MN是BE的垂直平分线;设BE于MN交于H;BH=EH=√5a/2;△BMH∽△BAE;

已知四边形ABCD为矩形,E为中点

结论:角E大于等于角F证明如下:f使任意的么如果是那么做AB的中垂线L由于E为CD中点所以三角形ABE的外接圆圆心0必定在垂线L上所以同时易知圆o只有CD有且仅有一个交点E所以角E大于等于角F

如图,已知四边形ABCD为正方形,⊿BEC为等边三角形,求∠EAD的度数

15°因⊿BEC为等边三角形,则有BC=BE,又因ABCD为正方形,则有AB=BC,则AB=BE,则⊿ABF为等腰三角形,则∠BAE=(180°-∠ABE)/2;又因⊿BEC为等边三角形,∠ABE=9

已知PD⊥面ABCD,四边形ABCD是边长为2的正方形,E是PB的中点,Cos=√3/3

第一个问题:以D为原点,DC所在直线为x轴、DA所在直线为y轴、DP所在直线为z轴建立空间直角坐标系,并使点E落在第一卦限内.容易得出A、B、C、D的坐标依次为(0,2,0)、(2,2,0)、(2,0