已知圆o是单位圆,正方形abcd的一边ab是圆o的弦

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 19:15:21
已知:如图,AB,CD是圆O的两条互相垂直的直径.求证:四边形ABCD是正方形

AC、BD是圆O的两条互相垂直的直径,所以∠AOB=∠BOC=∠COD=∠AOD=90°,AO=BO=CO=DO(=半径),所以△AOB≌△BOC≌△COD≌△AOD,∠ABO=∠BCO=∠CDO=∠

1、已知三角形abc为等腰三角形 o是底边bc中点 圆o与腰ab相切于d 证ac是圆o切线

1、作OE垂直于AC,AO是角平分线,所以OE=OD又圆O与AB相切,所以OD=R(半径)所以OE=R圆心到AC的距离等于半径,所以圆与AC相切设CA切⊙O'于点E,CB切⊙O'于点D,连结OO',O

(2014•丹东二模)如图,每个小正方形都是边长为1个单位长度的正方形,△A′B′C′是由△ABC绕点O旋转180°后得

(1)如图所示:O即为所求,点B′的坐标为:(-1,2);(2)如图所示:△A1B1C1即为所求;(3)∵A1O2=5,B′O2=5,A1B ′2 =10,∴△OA1B′是直角三角

如图,已知圆o是边长为2的等边三角形ABC的内切圆,则圆O的面积

显然圆的半径=1/tan30=根号3于是面积为3π再问:说仔细点再答:⊙﹏⊙b汗开始比错了是π/3角BAC=60度因为等边三角形角EAB=30度且DE垂直AD(DE为内切圆半径)D为AB中点所以在直角

已知正方形ABCD是圆O的内接正方形,他的边长为2,求半径和边心距

没有图啊,...你就凑发着听吧嘻嘻证明:做ON垂直于BC,垂足为N,并延长N到园O至点M做OE垂直于CD,垂足为E,连接OC因为四边形ABCD为正方形所以四边形ONCE为正方形所以OC为正方形ONCE

已知三角形ABC内接于圆O,BC是圆O的直径,AD是三角形ABC的高,OE平行AC,OE交AB于E.

证明:∵OE∥AC∴△BOE∽△BCA∴OB/BC=BE/AB∴BE=AB*OB/BC∵OB是半径,BC是直径∴BC=2OB∴BE=AB*OB/2OB=AB/2∴BE=AE又∵∠BAC是直径所对圆周角

已知:如图,圆O是三角形ABC的外接圆,角ACO=30度.求角ABC的度数

角ABC=60过O作OD⊥AC于D可得∠DOC=60∠AOC=120∠ABC=60(同一弧长所对的圆周角等于圆心角的一半)

已知圆O是三角形ABC的外接圆 CD是AB边上的高,AE是圆O的直径.求证:AC*BC=AE*CD

证明:以E为圆心,以BC长为半径画弧交元O于F点.连接EF,FA.则:EF=BC,∠FAE=90°所以:∠EAF=∠DAC (弦相等,弦所对的圆周角相等)所以:RT△ADC∽RT△EFA所以

已知圆O的半径为R,求它的内接正三角形ABC的内切圆的内接正方形DEFG的面积.

R^2/2内接正方形的对角线的长度的一半为R/2因为内接三角形为正三角形,三角为60°所以内接圆半径为R/2,即为正方形对角线的一半

已知圆O是边长为2的等边三角形ABC的外接圆,求圆O的半径

 再问:最后看不清再答: 再答:这样呢再问:看清了

已知圆O是边长为2的等边三角形ABC的外接圆.求圆O的半径!

由正弦定理:a/sinA=2r,得2/sin60°=2r,r=(2/3)√3

切线证明已知△ABC为等腰三角形,O是底边BC的中点,圆O与腰AB相切于点D.求证:AC与圆O相切

证明:作DE平行于BC,交AC于E点,连接OE、AO、OD∵D为圆O切点,∴OD⊥AB∵△ABC为等腰三角形,DE‖BC∴AD=AE又∵O为BC中点,∴∠DAO=∠OAE∵AD=AE,AO=AO,∠D

已知正三角形abc内接于圆o,四边形defg为圆o的内接正方形(d、e在直径上,f、g在圆上的正方形)S三角形abc=a

设圆半径为r,则内接正三角形ABC的边长等于r√3,高等于3r/2,面积S3=r²3√3/4;一边在直径上的内接正方形DEFG边长为r√(4/5),面积S4=4r²/5;S3/S4

已知PA垂直与平面ABC,AB是圆o的直径,C是圆o上的任一点

AB是圆o的直径,C是圆o上的任一点∴∠ACB=90°∴BC⊥AC∵PA垂直与平面ABC,∴PA⊥BC∴BC⊥平面PAC∵BC⊂平面PBC∴平面PAC⊥平面PBC

(2013•湖南模拟)如图所示,已知△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,DC⊥平面ABC,

(1)证明:∵四边形DCBE为平行四边形,∴CD∥BE,BC∥DE∵DC⊥平面ABC,BC⊂平面ABC,∴DC⊥BC∵AB是圆O的直径,∴BC⊥AC∵DC∩AC=C,∴BC⊥平面ADC.∵DE∥BC,

已知三角形ABC内接于圆O,最长边AB是圆O的内接正六边形的一边,BC是圆O内接正八边形的一边,那么

1内接正24边形,内接正六边形圆心角为60度,对应AB弦,C点在AB劣弧内,BC对应正8边形的边,圆心角是45度,余下15度,360/15=24,即应是正24边形的边再问:为什么剩下15度再答:60-

已知:如图,圆o在△abc的三边上截弦de=fg=kh求证:点O是△ABC的内心

∵de=fg=kh∴点O到DE、FG、HK的距离相等(同圆中,相等的弦所对的弦心距相等)∴点O在∠ABC和∠ACB的平分线上,即点O是△ABC的内心.

已知:如图,AB,CD是圆O的两条互相垂直的直径.求证:四边形ADBC是正方形

图中四个小的直角三角形都是等腰直角三角形,并且四个皆全等.∴ABCD四边相等,每个顶角都是2×45º=90º.ADBC是正方形.