已知在△abc中,角acb90度

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 21:31:35
在三角形ABC中,已知

A=45`a/sinA=c/sinCc=6*根号2

在△ABC中,已知tanAtanB

sinA*sinB/cosA*cosB0,∴cos(π-C)>0,cosC

已知,如图,在△ABC中,AB

∵AC=8,C△ABE=14,    ∴AB+AE+BE=14    ∵DE垂直平分BC  &nbs

在△ABC中,已知

a+b+c=180b-a=5c-b=20解得a=50b=55c=75

已知:在△ABC中,四边形ABDE、AGFC都是正方形.

因为∠EAC+∠BAC=90度:∠GAB+∠BAC=90度所以:∠EAC=∠BAG又因为AE=AB,AC=AG所以△ACE≌△ABG故BG=EC(2)EC⊥BG由上面可以知道△ACE顺时针旋转90度就

在直三棱柱ABC-A1B1C1中,底面ABC为直角三角形且角ACB90度 AC=6 BC=CC1=根号2 P是BC1上动

这需要展开图来进行解答,好险我做过,否则折磨死将ΔCBC1,ΔA1BC1展开在一平面,连接A1C则A1C就是所求最小,在ΔA1C1C中,证得角A1C1B=90,角CC1B=45,∴角A1C1C=135

已知:如图在RT△ABC中,

过B点作AC的平行线L1过D点作BC的平行线L2,交L1于点G,交AE于J过点E作AC的平行线L3,交L2于点H连接AG交L3于点I则AD=BC=GD,GH=BE=DC=HE那么角AIE=180°-角

在△ABC中,已知∠A=12

由题意,设∠C=6x,由∠B=4x,∠A=2x,则6x+4x+2x=180°,∴x=15°,∴最大角为∠C=6x=90°,则三角形的形状是直角三角形.

已知在直角三角形ABC中,

1'点N在AB上.因为AB=8,BC=6,所以AM=5.根据三角形中线性质可知点N平分AB.即AN=4.得到三角形BMN的高为3,面积为3BN(中线长度我不会求,初三的学过了么?)2'点N在AC上.若

在△ABC中,已知cosA=35,

(Ⅰ)sin2A2−cos(B+C)=1−cosA2+cosA=1−352+35=45.(Ⅱ)在△ABC中,∵cosA=35,∴sinA=45.由S△ABC=4,得12bcsinA=4,得bc=10,

已知:在△ABC中,

这是我以前回答别人的一道题目,第一问和楼主的题目几乎一模一样,楼主可以看看!

在△ABC中,已知sinA=2sinAcosB

sinA=2sinAcosB?改哈题1.1.∵sinA=2sinCcosB∴sinA=sin(B+C)=2sinCcosB即sinBcosC+cosBsinC=2sinCcosB∴sin(B-C)=0

在△ABC中,已知C=2B,

我觉得题目是不是有错?我得出的结果是c²-b²=ab...由C=2B,得sinC=sin2B=2sinBcosB,则有sinC/sinB=2cosB(a).由正弦定理得sinC/s

【二次函数】已知,如图在Rt△ABC中

这不难(1)∵a,b是方程x^2-(m-1)x+m+4=0的两根∴a+b=m-1①a*b=m+4②∴AB2=52=a2+b2=(a+b)2-2ab=(m-1)2-2(m+4)解得m1=6m2=-2(∵

在△ABC中,已知b=2

由bsinB=csinC所以sinC=12…(4分)所以c=1<b=2,所以C=30°…(6分)当C=30°时,A=105°…(8分)由bsinB=asinA得a=6+22…(13分)

在△ABC中,已知BC=23

做AD⊥BC于点D,如图:∴∠ADB=∠ADC=90°.设AB=x,那么BD=x2,AB=32x,在直角三角形ADC中,可得到CD=AD=32x,∵BD+CD=BC,解得x=6-23.∴AB=6-23

在△ABC中,已知sinA:sinB=2

由题意知a=2b,a2=b2+c2-2bccosA,2b2=b2+c2-2bccosA,又c2=b2+2bc,∴cosA=22,A=45°,sinB=12,B=30°,∴C=105°.故答案为:45°

如图 在Rt三角形ABC中 角ACB90°C垂直AB 垂足为D 若AD=1 BD=4 求CD的长 并

Rt△ACB中,∠ACB=90°,CD⊥AB;∴∠ACD=∠B=90°-∠A;又∵∠ADC=∠CDB=90°,∴△ACD∽△CBD;∴CD2=AD•BD=4,即CD=2.——很高兴为你解答

如图 三角形ABC中 角ACB90度 角BAC30度 三角形abe和acd都是等边三角形

刚才那个题已经解答了,请给一个好评好吗再答:这个问题请稍等再答:证明:连AF,FC∵△ABE是等边三角形,BF=EF∴AF是∠BAE的平分线,∴∠BAF=∠BAE=60/2=30°∵∠BAC=30°∴