已知在三角形abc中bd,ce分别是ac,ab边上的高,bq等于ac
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 17:18:35
在这里我就不作图了,你自己画个图应该能看懂:证明:∵BDCE是高∴BD⊥ACCE⊥AB∴∠BDA=90°∠CEA=90°又∵∠A=∠A∴∠ABD=∠ACE∴△ABD∽△ACE∴AD/AE=AB/AC即
分别延长AF与AG交BC边于点M,N因为角ABG=角NBG角AGB=NGB角=90度BG=BG所以三角形ABG全等于三角形NBG所以AG=NG,AB=NB同理AF=MF,AC=MC所以FG为三角形AM
做AG⊥BD交BD延长线于G;AG⊥BD;CE⊥BD;∴AG//CE;∵AD=CD;∴△AGD≌△CFD;∴GD=FD;AG=CF;∵AG//CE;AE=BE;∴EF是△BAG的中位线;∴BF=FG=
正确答案是16哦四边形的面积为对角线乘积的一半,即1/2X4X6=12又DE为三角形的中位线,三角形ACD的面积:三角形ABC的面积=1:4,易得三角形ACD的面积=4,所以三角形ABC的面积=16
16.你可以先求出四边形BCDE的面积为12,然后因为DE是中位线,所以易得三角形ADE的面积为四,所以总面积为16
延长AE,CB交于H延长AG,BC交于K因为BD与CE分别为∠B和∠C的平分线,AG⊥CE,AH⊥BD可证AE=EHE是AH的中点(可用全等△ACE全等HCE(角边角)用到平分角,公共边,垂直角相等)
由垂直可以得到:角1+角A=角2+角A,得到角1=角2,得到三角形ABD相似三角形ACD,得到AD:AE=AB:AC,本身有角A=角A,由定理:两组对应边成比例,并且夹角相等,可得到:三角形ADE相似
1.180°-(80°/2)-(60°/2)=110°2.180°-(180°-40°)/2=110°3.180°-(180°-n°)/2=90°+n°/2
不连接DE点的话有2个等腰三角形.ABC和GBC连接DE点就有4个等腰三角形.ABC和GBC,ADE,GDE.再问:但是答案上写的是6个为什么呢再答:有些时候答案也不完全可靠,但是如果角ABC=2倍角
利用边角边相等的定理来证明
连DE则DE平行于BC且等于BC的一半设BD与CE交于O则CO=4BO=2四边形BCDE面积=4*6/2=12三角形ADE面积是四边形BCDE的三分之一即4三角形ABC的面积=12+4=16
∵BD,CE分别是边AC,AB上的高,∴∠ADB=∠AEC=90º,又∠A=∠A,∴⊿ADB∽⊿AEC,∴AD/AE=AB/AC,在ADE和⊿ABC中AD/AE=AB/AC,∠A=∠A,∴A
角B+角C=180-角A=180-xBDCE为角平分线角DBC+角ECB=1/2(角B+角C)=90-x/2角BPC=180-角DBC-角ECB=90+x/2望采纳
(1)∠ABC=80°,BD为角平分线所以,∠IBC=40°∠ACB=60°,CE为角平分线所以,∠ICB=30°所以,∠IBC+∠ICB=70°△BIC中,∠BIC+∠IBC+∠ICB=180°所以
延长BA,CE交于点F,∵∠ABD+∠ADB=90°,∠CDE+∠ACF=90°,∴∠ABD=∠ACF,又AB=AC.∴Rt△ABD≌Rt△ACF.∴BD=CF,∵∠BDA是△BDC的外角,∴∠BDA
证明:延长BA、CE,两线相交于点F∵BE⊥CE∴∠BEF=∠BEC=90°在△BEF和△BEC中∠FBE=∠CBE,BE=BE,∠BEF=∠BEC∴△BEF≌△BEC(ASA)∴EF=EC∴CF=2
因为角BDC=角CEB=90度,所以这四点都在以BC为直径的圆上.
证明:因为BD,CE分别是AC,AB边上的高,所以三角形BCD和三角形BCE都是直角三角形,角BDC=角BEC=直角,又因为BC=BC,BD=CE,所以直角三角形BCD全等于直角三角形BCE(斜边,直
证:∵三角形的三条角平分线交于一点∴OA平分角BAC∴角BAO等于角CAO
证明:∵BD⊥AE,CE⊥AE∴∠ADB=∠AEC=90∴∠BAE+∠ABD=90∵∠BAC=90∴∠BAE+∠CAE=90∴∠ABD=∠CAE∵AB=AC∴△ABD≌△CAE(AAS)∴BD=AE,