已知如图在三角形ABC中D是BC的中点且AD=ACED
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 21:08:35
∵BE∥CF,∴∠GBE=∠DCF,∠E=∠DEC,∵BE=CF,∴ΔDBE≌ΔDCF,∴BD=CD,∴AD中ΔABC的中线.
AB=ACD为中点∴AD为△ABC的中垂线AB=ACAD=ADBD=CD△ABD≌△ACD
(1)连接CD,因为等腰RT△ABC,D是斜边AB中点,所以CD=AD=BD=1/2ABCD⊥AB所以∠A=∠ACD=45°又因为AE=CF所以△ADE≌△CDF(SAS)所以DE=DF(2)因为△A
∵AD²=BD*DC,∴BD/AD=AD/DC又∵ΔADB,ΔCDA为直角三角形∴ΔADB∽ΔCDA,(一角相等,夹这个角的两边对应成比例)∴∠BAD=∠C,∠B=∠CAD∴∠A=∠BAD+
因为角a=角DBC=EFB=E所以全等(SAS)
1.用虚线链接AD连点2.以B点为顶点,用虚线向右做AD的平行线BB',且让BB'=AD3.以C点为顶点,用虚线向右做AD的平行线CC',且让CC'=AD4.用实线依次连接点D,B',C'即可
如图∵∠A∶∠C=5∶3所以,可设∠A=5x,则∠C=3x∵⊿ABC≌⊿DBE∴∠ABC=∠DBE,AB=DB∴∠BDA=∠A=5x∴在⊿ABD中∠ABD=180°-10x∵∠ABC=∠DBE∴∠EB
解题思路:根据等腰三角形三线合一的性质可得∠DAC=1/2∠BAC=20,∠ADC=90从而可得∠CDE解题过程:
2∠ACD=90°,则∠ACD=45°∠DOC=90°,且DO=CO,则三角形OCD为等腰直角三角形,∠OCD=45°则∠ACO=∠ACD+∠DCO=45°+45°=90°则直线AC是圆的切线
∵AB=CDBC=DC∠B=∠D=90°∴△ABC≌△CDE当△CDE的点C到达点B时,∵∠ACB=∠EBC∴AC‖BE再问:xiexie你~\(≧▽≦)/~啦啦啦
∵∠EAC是外角∴∠EAC=∠B+∠C∵∠B=∠C∴∠EAC=2∠C∵AD平分∠EAC∴∠DAC=2分之∠EAC=∠C∴AD平行于BC(内错角相等,两直线平行)
证明:∵∠B=∠D=90°,BC=CD,AC=AC∴△ABC≌△ADC(HL)
用三角形内角和等于180度来计算角A+角ABC+角C=5角A=180度角A=36度角C=角ABC=2角A=72度角DBC=角C/4=18度又角C+角DBC+角BDC=180度角BDC=180度-72度
∵在三角形ABC中,∠B=∠C,∴三角形ABC是等腰三角形又∵在三角形ADE中∠ADE=∠AED,∴三角形ADE也是等腰三角形∵三角形ABC与三角形ADE共有一个顶角∠A,而且E分别是AB,AC上的点
∵∠A=∠ADM=30°,∴MA=MD.又MG⊥AD于点G,中的结论成立.如图9,在Rt△AMG中,∠A=30三角形DGM和NHD相似所以DH=(根号3)MGAG=(
∵BE∥CF∴∠E=∠CFD,∠EBD=∠FCD∵BE=CF∴△BDE≌△CDF(ASA)∴BD=DC∴AD是△ABC的BC边上的中线
回答有采纳不?再问:要采纳,必须画图再答:再答:连接起来,取相等线段再答:采纳,采纳!!再答:说好的采纳呢?别顽皮了,,,,
证明:1.证明AF=1/2FC在△BCF中∵DG为中位线∴CG=FGBF∥DG在△ADG中∵EF∥DG∴AF:FG=AE:ED∵E是AD中点∴AE=ED∴AF=FG∴AF=FG=CG∴AF=1/2FC
由那个乘法式子变化一下可知abd与acd是相似三角形,然后看清图中角的相等对应关系,三角形内角和180,所以角bad与角cad和是90度再答:我跳了几步,你自己推算再问:我的世界混乱来。。。再问:再答