已知如图在四边形abcd中对角线交与点o,oa=bo=co=do,ac垂直bd

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 01:44:53
如图,在四边形ABCD中,AD‖BC,AD

一楼想多了,这是初中生.过点A、D分别作BC的垂线,垂足分别为E、F,因AB=AC,所以E为BC中点,所以DF=AE=0.5BC=0.5BD,所以∠CBD=30°,∠BCD=0.5(180°-∠CBD

如图,在四边形ABCD中,

不知道说的是哪个角,反正OA=OC(斜边中线等于斜边一半)那么角OAC=角OCA

如图,在园内接四边形ABCD中,已知AB=2,BC=6,CD=DA=4,求四边形ABCD的面积

连接AC则cosB=(AB^2+BC^2-AC^2)/2AB*BC=(40-AC^2)/24cosD=(AD^2+CD^2-AC^2)/2AD*CD=(32-AC^2)/32ABCD内接于圆所以B和D

如图:已知四边形ABCD中,AB=AD,

∵∠BAD=60°,AB=AD∴△ABD是等边三角形∴BD=AD,∠ADB=60°∵∠BCD=120°∴∠DCE=60°∵CD=CE∴△CDE是等边三角形∴CD=DE,∠CDE=60°∴∠CDE+∠B

已知 如图 在四边形abcd中,AD⊥DB,BC⊥CA

∵AD⊥DB,BC⊥CA∴∠ADB=∠BCD=90°在Rt△DAB与Rt△CBA中(∴∠ADB=∠BCD=90°)∵1BD=AC2AC=AC∴Rt△DAB全等于Rt△CBA(HL)∴DA=CB在△AD

已知:如图,四边形ABCD中,AD垂直于DC

证明AE与CF平行需构造应用平行线判定方法的条件,∠DEA和∠DFC是直线AE与FC被直线CD所截而成的同位角,根据垂直的定义和角平分线的性质可结合图形证得∠DAE=∠DFC,再根据同位角相等,两直线

已知:如图,在四边形ABCD中,AB=CD,AD=BC

不一定成立,如过D做AB边的高垂足为F,则在F两侧可各找一点H,T使得DH=DT,但AT却不等于AH.类比到两边,故不成立!

已知:如图,在四边形ABCD中,BD平分∠ABC,AB

在BC边上取一点E,使BE=AB,则三角形ABD全等三角形DBC,角DEC等于1/2角ABC+1/2角ADE,因为AD=DE=DC,则角DEC=角C.所以角ABC+角ADC=三角形DEC的内角和180

已知:如图,在四边形ABCD中,AC平分∠DAB,AD=DC≠AB.

因为AC平分角DAB且AD=DC,所以角DCA=角CAB所以DC//AB因为点P是AB的中点且点P到AC和BD的距离相等所以AO=BO所以三角形AOB为等腰三角形所以角CAB=∠DBA根据边角边,可证

如图,四边形ABCD中,

∵∠D=90°∴由勾股定理得:AC²=CD²+AD²∴AC=4∵BC=3,AB=5∴AB²=AC²+BC²∴AC⊥BC∴S△ABC=AC*B

如图在四边形ABCD中AC平分角DAB

证明:∵AC平分∠DAB(1)      ∴∠DAC=∠BAC      &nb

如图,在凸四边形ABCD中,已知AB+BD≤AC+CD

思路正确,有理有据,得以顺利证明.不过,就是要把【解】写成【证明】.

已知:如图,在四边形ABCD中,AD‖BC,BD垂直平分AC.求证:四边形ABCD是菱形.

AC交BD于O点,三角形ADO与三角形BOC相似,所以DO=BO,对角线互相垂直且平分的四边形是菱形

已知:如图,在平行四边形ABCD中,E是AB的中点,ED=EC,求证:四边形ABCD是矩形

ABCD是平行四边形,所以AD=BC.E是AB的中点,所以AE=BE,ED=EC所以三角形ADE全等于三角形BCE,所以角EAD=角EBC.因为AD//BC,所以角DAE+角EBC=180所以角EAD

已知:如图,在四边形ABCD中,AB平行DC,AD平行BC.

利用角边角求出△ACD和△ABC全等(AB是公共边)就可以了再问:可以详细的写一下步骤吗??再答:AB平行DC那么∠BAC=∠DCAAD平行BC那么∠ACB=∠DACAB=AB所以△ACD和△ABC全

已知,如图,在平行四边形ABCD中,BE=DF 求证:四边形AECF是平行四边形

再问:再帮我看到题,可以吗?就一道再答:看看再问:再问:第十二题再问:可以写吗?再答:想到了再答:但不知道对不对再问:木有关系再问:但是一定要用到平行四边形的定理……麻烦了再答:再答:你几年级啊。。。

如图,在四边形ABCD中,BC

分别过A做CD的垂线,交CD于E,做BC的垂线,交BC的延长线于F,得AE=DE=2,AC=4,CE=2√3所以△ACD面积为0.5*AE*CD=2+2√3由AC=4,得AF=2,CF=2√3,又AB

如图,已知在四边形ABCD中,点E是CD上的一点,连接AE、

解题思路:利用三角形全等求证。解题过程:解:(1)①②④⇒AD∥BC;证明:在AB上取点M,使AM=AD,连接EM∵AE平分∠BAD∴∠DAE=∠MAE

已知,如图,在四边形ABCD中,AB>DC,

因为角1=角2,AC=BD,AB=BA,那么三角形ABC全等于三角形BAD,所以BC=AD=CD,角CBA=角DAB,又因为AC垂直BC,所以角ADB=角BCA=90度又因为角1=角2,所以角DAC=

已知:如图,在▱ABCD中,对角线AC交BD于点O,四边形AODE是平行四边形.求证:四边形ABOE、四边形DCOE都是

证明:∵▱ABCD中,对角线AC交BD于点O,∴OB=OD,又∵四边形AODE是平行四边形,∴AE∥OD且AE=OD,∴AE∥OB且AE=OB,∴四边形ABOE是平行四边形,同理可证,四边形DCOE也