已知实数x,y,z满足 x 2 |3x y m|
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:28:28
x+2y-z=6①x-y+2z=3②,①×2+②,得x+y=5,则y=5-x③,①+2×②,得x+z=4,则z=4-x④,把③④代入x2+y2+z2得,x2+(5-x)2+(4-x)2=3x2-18x
用x来表示y和z解方程组y-z=-x-y+2z=-3x两式相加得z=-4x把z=-4x代入y-z=-x中,得y=-5x所以x:y:z=x:(-5x):(-4x)=1:(-5):(-4)或x:y:z=-
x²-6xy+10y²+4y+|z²-3z+2|+4=0(x²-6xy+9y²)+(y²+4y+4)+|z²-3z+2|=0(x-
1.x+2y+3z=6,x2+y2/2+z2/3=x^2+(2x)^2/8+(3z)^2/27≥(x+2y+3z)^2/(1+8+27)(注:柯西不等式)=36/36=1∴x2+1/2y2+1/3z2
x2-4x+y2+6y+z+1+13=(x-2)2+(y+3)2+z+1=0,∴x-2=0,y+3=0,z+1=0,即x=2,y=-3,z=-1,则(xy)z=(-6)-1=-16.
f(x,y,z,w)=x+y+z+w+a(x²+y²+z²+w²+x+2y+3z+4w-17/2)f`x=1+a(2x+1)=0f`y=1+a(2y+2)=0f
x+2y-z=6所以2x+4y-2z=12因为x-y+2z=3两边相加3x+3y=15x+y=5带回去得到y=5-xz=4-x带回x^2+y^2+z^2=3x^2-18x+41=3(x^2-6x+9)
由x+y+z=a得y+z=a-x;平方得y^2+z^2+2yz=x^2+a^2-2ax,x2+y2+z2=a2/2两式相减得Yz=a^2/4+x^2-ax,则y、z为t^2-(a-x)t+(a^2+x
由正实数x,y,z满足x2-3xy+4y2-z=0,∴z=x2-3xy+4y2.∴xyz=xyx2−3xy+4y2=1xy+4yx−3≤12xy•4yx−3=1,当且仅当x=2y>0时取等号,此时z=
分解因式有(x-3y)(2x-y)=0所以有x=3y或2x=y所以x:y=3:1或x:y=1:2
2x-3y-z=0..(1)x-2y+z=0...(2)(1)+(2):3x-5y=03x=5yy=3/5x将y=3/5x代入(1)z=2x-3y=2x-3*3/5x=x/5x:y:z=x:3/5x:
x/(y+z)+y/(z+x)+z/(x+y)=1所以x/(y+z)=1-[y/(z+x)+z/(x+y)]y/(z+x)=1-[x/(y+z)+z/(x+y)]z/(x+y)=1-[x/(y+z)+
等于0.x/(y+z)=1-[y/(z+x)+z/(x+y)]y/(z+x)=1-[x/(y+z)+z/(x+y)]z/(x+y)=1-[x/(y+z)+y/(z+x)]x2/(y+z)+y2/(z+
x+2y+3z=1的话,x=1/14;y=1/7;z=3/14三个数平方和最小值则为:1/14
y=-x²+x+3x+y=-x²+2x+3=-x²+2x-1+4=-(x-1)²+4因为-1<0所以当x=1时,x+y的最大值=4
x2+y2=6x(x-3)^2+y^2=9参数方程:x=3+3cost,y=3sintz=x2+y2+2x=(3+3cost)^2+(3sint)^2+2(3+3cost)=24+24cost0
|4x-4y+1|+1/3*√(2y+z)+(z^2-z+1/4)=0|4x-4y+1|+1/3*√(2y+z)+(z-1/2)^2=0则4x-4y+1=02y+z=0z-1/2=0解得z=1/2y=
x²+y²+2x-2√3y=0,即(x+1)²+(y-√3)²=4=2²,是一个以(-1,√3)为圆心,2为半径的圆,且过原点因此(1)x²
由x2+xy+y2=3得,x^2+y^2=3-xyx^2+y^2≥2xy得,xy≤1所以x^2-xy+y^2=3-2xy≥1等号成立当且仅当x=y=±1
(x+y+z)(x+y+z)=a2=a2/2+2xy+2xz+2yz,有a2/2=2x(y+z)+2yz=2x(a-x)+2yz,则有a2/2-2ax+2x2=2yz(由于2yz