已知抛物线y=(p^2-2)x^2 4px q的对称轴是直线x=2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 23:39:40
已知抛物线C1:y=ax^2+bx与抛物线C2:y^2=2px(p>0)关于直线x+y=1对称

抛物线C2:y^2=2px(p>0),此抛物线焦点坐标F2为:(p/2,0),抛物线C1:y=ax^2+bx,此抛物线焦点坐标F1为:[-b/2a,(4ac-b^2+1)/4a]∵抛物线C1:y=ax

已知抛物线y=x^2上点P处的切线与直线y=3x+1的夹角为(派/4),试求点P的坐标.

解依题意得设P点坐标为(X.,Y.)则过P点之斜率为Y=2X.又设为两直线夹角为θ则tgθ=(k2-k1)/(1+k1*k2)而k2=2X.k1=3θ=45度得X.=—1又得Y.=1所以p的坐标为(-

已知点p在抛物线y²=2x上 1.若p横坐标为2,求点p到抛物线焦点的距离 2.若点p到抛物线焦点的距离4,求

同学这道题是这样做的,你要明白抛物线的定义哦.1,因为y^2=2x,所以焦点为(1/2,0)将x=2带入方程得p点坐标为(2,1).所以p点到焦点的距离为根号(1^2+3/2^2)=根号13/22,由

已知抛物线方程:y=x²-4x+2,求过线外一点p(1,0)与抛物线切线方程.

再问:没看懂再答:答案对不再问:不知道。因为我没看懂,我求方法,最好用导数来做再答:我用了再答:你给个好评吧再答:我告诉你方法再答:这题有点难算再问:告诉我方法,你写的字我没看懂再答:给好评吧再答:我

已知抛物线C:x^2=4y的焦点为F,点P为抛物线下方的一点,

(1):→P(1,-2)y`=x/2,设A(m,m²/4),B(n,n²/4)在A点切线斜率k1=m/2在B点切线斜率k2=n/2PA直线斜率:k1=(m²/4+2)/(

已知抛物线 y^2=4x上一点P到抛物线准线的距离为5,求过点P和原点的直线的斜率.

准线是x=-1,P到抛物线准线的距离为5,则P的横坐标为4,把x=4代入抛物线得y=±4;所以P(4,±4)当P(4,4)时,Kop=1;当P(4,-4)时,Kop=-1;希望能帮到你,如果不懂,请H

已知抛物线y^2=4x上一点P到该抛物线的准线距离为5,则过点P和原点直线的斜率为?

其准线为x=-1p到准线的距离为5则铺垫的坐标可为(4,-4),(4,4)则斜率k为4/4=1和-4/4=-1

已知抛物线y^2=2px(p>0)的焦点F与双曲线x^2-y^2/x=1的右顶点重合,抛物线与直线

题目有误,请改正.再问:双曲线改为x^2-y^2/3=1再答:(1)F(1,0),抛物线方程是y^2=4x,①(2)把l:y=k(x-2),即x=my+2,②其中m=1/k,代入①,得y^2-4my-

已知直线y=x-2与抛物线y

将y=x-2与y²=2x联立消去x得:(x-2)²=2x,x²-6x+4=0,设A(x1,y1),B(x2,y2).则x1+x2=6,x1x2=4.则x1x2+y1y2=

已知点F是抛物线y^2=4x的焦点,点P在该抛物线上,且点P的横坐标是2,则|PF|=?

由于是抛物线,所以抛物线上一点到焦点的距离等遇到准线的距离|PF|就等于P点到准线的距离,准线x=-1,P点的恒坐标是2,所以|PF|为3再问:准线是怎么计算出来的,谢谢再答:圆锥曲线有第二定义,准线

数学问题:已知一椭圆以抛物线x^2=2p(y+(p/2))的准线为下准线

1、(1)、抛物线x^2=2p(y+(p/2)准线为-p/2-p/2,y=-p,焦点F正好是原点(0,0),B点至准线距离为OB,与到焦点距离O相等,离心率为1,OA=OB/2,设A点至准线段为AM,

已知P(4,-1),F为抛物线y^2=8x的焦点,M为抛物线上的点

过M作MN//x轴交准线x=-2于N则:MF=MN所以,MP+MF=MP+MN≥PN所以,P、M、N三点共线时,MP+MF值最小所以,M点纵坐标=P点纵坐标=-1M点横坐标=(-1)^2/8=1/8即

已知M(4,2),F为抛物线Y^2=4X的焦点,在抛物线上找一点P,是PM+PF最小,求p

点M在抛物线内部设P到准线x=-1的距离为d,则:PF=d所以,PM+PF=PM+d数形结合易得:PM+d的最小值就是M到准线的距离,为5过M作准线x=-1的垂线,与抛物线的交点即为P易得:P(1,2

已知抛物线y平方=1/2x,O为坐标原点,F为抛物线的焦点,OF=1/8,求抛物线上点P的坐标,

设P(X,Y)则S=(1/8*|Y|)/2=1/4解得:Y=4或-4则X=32所以P(32,-4)或P(32,4)

已知抛物线y^2=2x的焦点为F,定点A(3,2),在抛物线上求一点P,使lPAl+lPFl最小,那么P

点A在抛物线y²=2x内部,由于PF等于点P到准线的距离d,所以,|PA|+|PF|=|PA|+d,当且仅当PA平行x轴时取得最小值,此时P(2,2).

已知抛物线y^2=2x的焦点为F,定点A(3,2),在抛物线上求一点P,使lPAl+lPFl最小,那么P坐标

利用抛物线的定义点A在抛物线y²=2x内部,由于PF等于点P到准线的距离d,所以,|PA|+|PF|=|PA|+d,三点共线时取得最小值.当且仅当PA平行x轴时取得最小值,此时P(2,2).

已知抛物线x^2=4y上一点p到焦点的距离为3,点p纵坐标是

选D有抛物线性质可知准线为y=-1所以转化为纵坐标到准线的距离为到焦点的距离所以有y+1=3所以纵坐标为2

已知抛物线方程为y^2=2p(x+1)(p>0),直线l:x+y=m过抛物线的焦点F且被抛物线截得的弦长为3,求p的值

顶点(-1,0)开口向右则准线是x=-1-p/2焦点(-1+p/2,0)则-1+p/2+0=m所以y=-x+m=-x-1+p/2代入x^2+x(2-p)+(1-p/2)^2=2px+2px^2+x(2

已知抛物线x^2=2py(p>0)的准线与圆x^2+y^2-4y-5=0相切,则抛物线的方程为

已知抛物线x^2=2py(p>0)的准线y=-p/2圆x^2+y^2-4y-5=0x^2+(y-2)^2=9抛物线x^2=2py(p>0)的准线与圆x^2+y^2-4y-5=0相切,-p/2=-3p=