已知抛物线Y=AX的平方 6X-8与直线Y=-3X
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 23:52:42
由抛物线y=ax平方+bx+c与抛物线y=2x平方的形状相同,得,a=2,由顶点坐标(2,-1),由顶点式,∴y=2(x-2)^2-1=2x^2-8x+7
(1)对称轴是直线x=1,点A的坐标是(3,0).(2)①如图1,连接AC、AD、CD,过点D作DM⊥y轴于M.方法一:∵A(3,0),C(0,-b),D(1,-a-b).∴OA=3,OC=b,MC=
题的内容应是:已知直线Y=ax+k与抛物线Y=x平方+3x+5的交点横坐标为1则k=交点坐标?答:将x=1代入抛物线得,y=9,所以交点坐标为(1,9)之后将(1,9)代入直线中,就可得k了,由于你将
根据题意知道-b/2a=-1抛物线的形状与y=x平方+5相同知道a=1所以b=2抛物线与x轴的2个交点间距离为3知道y=x^2+2x+c=0的2解差为3,解解吧,很容易得到c=-5/4答案是y=x^2
(x1-x2)²=16(x1+x2)²-4x1x2=16a²+8a²=16a²=16/9a=±4/3
x=0时y=0所以过(0,0),又过A所以对称轴x=(0+4)/2=2顶点在对称轴上所以顶点横坐标是2在y=-1/2x-1上所以y=-1-1=-2顶点(2,-2)y=a(x-2)²-2过(0
有两个不相等的实数根,且一正一负ax平方+bx+c-1=0就是ax平方+bx+c=1即y=1,从图像上可以看出,y=1,y轴两侧都有相应的x存在.
设直线y=-2x-6分别交于x轴,y轴的点坐标为A(x,0)B(0,y).把A.B点坐标分别代入y=-2x-6中,解得x=-3;y=-6则点坐标为A(-3,0)B(0,-6).又已知C(1.0)分别把
∵有最高点∴a<0①;∵最大值是4,∴(4ac-b∧2)/4a=4②;再代入(3,0)(0,3)得9a+3b+c=0③;c=3④;①②③④即可得解再问:我奇迹般的比你先做出来,不过还是谢谢你再答:呵呵
可知a不等于0当判别式=0时定与x轴只有一个交点,即顶点在x轴上判别式=25-8a=0所以a=25/8
函数y=x^2-|x|-12的图象与x轴交于A、B两点,另一抛物线y=ax^2+bx+,所以A点为(4,0)B点为(-4,0)(或者A点为(-4,0),B点为(4
12,由题意,A(1,2),B(0,3).所以s△AOB的底边OB=3,高为1.故s△AOB=1/2×3=3/2..13,由于(2,b)在y=2x上,所以b=4..把x=2,y=4代入y=ax
方法一:假设(x,-x^2)是抛物线y=-x^2的点,所以点到直线4x+3y-8=0距离为:|4x-3x^2-8|/5=|3x^2-4x+8|/5=|3(x-2/3)^2+20/3|/5故最小值是:(
y=ax2+bx-7whenx=1,y=1a+b=8y'=2ax+b(y-1)=2a(x-1)+by=2ax+(b+1-2a)4x-y-(6+1-4)=4x-y-3过点(1,1)的抛物线的切线方程4x
(路过.)∵点C(x0,y0)是抛物线的顶点,y1>y2≥y0,∴抛物线有最小值,函数图象开口向上,①点A、B在对称轴的同一侧,∵y1>y2≥y0,∴x0≥3,②点A、B在对称轴异侧,∵y1>y2≥y
顶点在X轴上,即最大或最小值为0,所以是一个完全平方,可见a=正负6
顶点坐标是:x=-a/-2=a/2y=(-4(b-b^2)-a^2)/-4=b-b^2+a^2/4代入y=4x^2+4x+19/12:b-b^2+a^2/4=4*a^2/4+4*a/2+19/12b-
当a=-1时,y=-x²+x+2=-(x-1/2)²+9/4∴顶点坐标(1/2,9/4),对称轴:直线x=1/2再问:下一问啊那是关键再答:下一问题目不完整。再问:当a=a1a=a
将A、B点坐标代入抛物线方程,得c=1,4a+2b+c=-3即2a+b=-2,又因为抛物线关于x=-1对称,则也过A'(-2,1),代入得2a=b,综上,a=-1/2,b=-1,c=1.抛物线解析式为
由抛物线y=ax²+bx+c与y=x²形状相同,得a=1,由对称轴是直线x=3,得-b/2a=3,即b=-6,所以 y=x²-6x+c=(x-3)²+c-9,最