已知抛物线y^2-4x的焦点为f,直线l过点m(4,0)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 00:54:10
已知抛物线C:y^2=4x的焦点为F,过F且斜率为1的直线与抛物线C交于A、B两点

答:(1)抛物线y^2=4x的焦点F为(1,0),准线为x=-1,AB直线为:y-0=1*(x-1),即:y=x-1代入抛物线方程整理得:x^2-6x+1=0根据韦达定理:x1+x2=-b/a=6,x

已知抛物线C的方程y^2=4x,F为抛物线的焦点,顶点在原点上

y^2=4x,抛物线的焦点F(1,0)设圆心为(a,b),半径为r圆与x轴相切,那么r=|b|,圆与抛物线准线x=-1相切,则a+1=|b|又b^2=4a∴(a+1)^2=b^2=4a解得a=1,b=

已知抛物线C:x^2=4y的焦点为F,点P为抛物线下方的一点,

(1):→P(1,-2)y`=x/2,设A(m,m²/4),B(n,n²/4)在A点切线斜率k1=m/2在B点切线斜率k2=n/2PA直线斜率:k1=(m²/4+2)/(

已知抛物线y^2=4x的焦点为F 准线为l

纯粹的体力活儿啊!首先,抛物线的方程可以写成(x2)^2=2p(y-b).且限制条件为p<1/2.由

已知抛物线y^2=4x的焦点为F,过焦点F的直线交于抛物线于A,B两点,且A在第一象限,

(1)F(1,0)AB过F点设直线AB:x=my+1设A(x1,y1),B(x2,y2)x=my+1代入y^2=4x得y^2-4my-4=0△AOB面积=1/2*OF*|y1-y2|=1/2*√[(y

已知抛物线的方程为4x-y方=0,求此抛物线的焦点坐标和准线方程

已知抛物线的方程为4x-y²=0,求此抛物线的焦点坐标和准线方程y²=4x;2p=4,p=2,故焦点F(1,0);准线:x=-1.

已知抛物线的方程为4x-y方=0,求此抛物线的焦点坐标和标准方程

4x-y²=0即标准方程为y²=4x根据抛物线的标准方程y²=2px可以得到2p=4故p=2抛物线的焦点(p/2,0)所以抛物线的焦点为(1,0)

已知抛物线y^2=4x,F为抛物线的焦点且PQ为过焦点的弦,若|PQ|=8求△OPQ的面积

面积为4乘以根号2,.设x=ky+1,代入抛物线方程PQ可用k表示,求得k的平方为1.面积就出来了我做了,你也要做一下哦有问题,可以问我

已知m为实数,椭圆x^2/3+y^2/m=1的一个焦点为抛物线y^2=4x的焦点,则m=?

抛物线y^2=4x的焦点为(1,0)椭圆x^2/3+y^2/m=1的一个焦点为(1,0)c=1,a^2=3,b^2=mm=a^2-c^2=2

已知抛物线方程为x=1/4 y^2 求焦点坐标

变为y^2=4x,由抛物线的定义知焦点坐标为(1,0)

已知P(4,-1),F为抛物线y^2=8x的焦点,M为抛物线上的点

过M作MN//x轴交准线x=-2于N则:MF=MN所以,MP+MF=MP+MN≥PN所以,P、M、N三点共线时,MP+MF值最小所以,M点纵坐标=P点纵坐标=-1M点横坐标=(-1)^2/8=1/8即

已知抛物线x^2=4y上一点p到焦点的距离为3,点p纵坐标是

选D有抛物线性质可知准线为y=-1所以转化为纵坐标到准线的距离为到焦点的距离所以有y+1=3所以纵坐标为2

已知抛物线y^2=4x,焦点F

F(1,0)由于AB不可能平行y轴,可设AB:ky=x-1(x-1)^2=y^2k^2=4xk^2x^2-(2+4k^2)x+1=04=x1+x2=2+4k^2k=根号2/2x^2-4x+1=0|x1

.已知抛物线y的平方=4x 的焦点为 f,

焦点为(1,0),则直线不与x轴垂直的直线设为y=√3(x-1),直线与x轴垂直的直线设为x=1,把问题补全再问:已知抛物线y的平方=4x的焦点为f过f作斜率为√3的直线与抛物线在x轴上方的部分交于m

已知椭圆的中心在原点,其一条准线方程为X=-4,它的一个焦点和抛物线Y^2=4X的焦点重合.

K不等于0那就是线段AB的中垂线和X轴相交于点P,M等于0m的范围是A--K

已知抛物线y^2=4x的焦点为F 准线为l

哈哈,这种题估计只要大学读的非数学非物理专业的,哪怕高中数学再牛也答不出来了!

已知抛物线Y=1/2X,O为坐标原点;F为抛物线的焦点.求OF的值

Y=1/2X是一条直线.如果方程是Y^2=1/2X.那么F坐标(1/8,0)|OF|=1/8.

已知抛物线的焦点是圆x^2+y^2+4y=0的圆心,求抛物线的方程

x^2+y^2+4y=0x^2+(y+2)^2=4圆心为(0,-2)则抛物线焦点为(0,-2)位于y轴负半轴.则抛物线的方程为:x^2=-8y在抛物线x2=-2py中,焦点是(0,-p/2),准线的方

已知抛物线y=4x上的一点p到y轴的距离为2,则点p到此抛物线的焦点的距离是

答:抛物线y^2=4x=2px2p=4解得:p=2焦点F(2,0),准线x=-2点P到y轴的距离为2,则到x=-2的距离为2+2=4所以:点P到焦点的距离为4

抛物线y=4x^2的焦点坐标为?

y=4x^2的焦点坐标:(0,1/16)不好意思,刚才写错了,标准方程应该是:x^2=2py标准方程:x^2=2py,焦点坐标(0,p/2)x^2=y/4=2*1/8*y所以p=1/8即焦点坐标是:(