已知数列an.dn均为等差数列,满足a5 d5=3,a9 d9=19
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 01:29:00
a2005*a20060,a20050,则a2007+a2006>0因为a2005+a2006=a1+a40100所以使前n项之和sn
即对任意n∈N,(a+n)/(a+n-1)≥(a+8)/(a+7)两边同减1:1/(a+n-1)≥1/(a+7)此不等式可分三种情况:(1)a+7≥a+n-1〉0显然n≥8时不成立(2)0〉a+n-1
结果是an=4(2n+1);首先由s1,s2,s3的关系可列出两个方程,关于a1,a2,a3.和已知的2a2=a1+a3联立,求出a1=4.接下来,利用根号sn是等差数列,推导出s(n)和a1的关系,
数列{An}及数列{Bn}都为等差数列,所以2an=a(n+1)+a(n-1)2bn=b(n+1)+b(n-1)cn=an+bn所以2cn=2an+2bn=a(n+1)+a(n-1)+b(n+1)+b
显然有:an=a1+(n-1)d,bn=b1*q^(n-1),又a3=b3,a7=b5,所以:a1+2d=a1*q^2,①a1+6d=a1*q^4,②由上面2个式子,得到:3①-②:2a1=a1*(3
解题思路:同学你好,你的题目中的下标和上标表示不清楚啊,请截图发上题目来好吗解题过程:同学你好,你的题目中的下标和上标表示不清楚啊,请截图发上题目来好吗
a(n)=a(n+3).不可能递增.
设{an}、{bn}的公差分别为d1、d2,则a(n+1)-an=d1,b(n+1)-bn=d2对所有正整数n都成立,因此sa(n+1)+tb(n+1)-san-tbn=s[a(n+1)-an]+t[
1.n=1时,2a1=2S1=a1²+1-4a1²-2a1-3=0(a1+1)(a1-3)=0a1=-1(数列各项均为正,舍去)或a1=3n≥2时,2an=2Sn-2S(n-1)=
证明:取倒数1/an+1=an+3/3an=1/3+1/an1/an+1-1/an=1/3a1=1/21/a1=2{1/an}2首项1/3公差等差数列an=3/(5+n)
(1)dn满足dn=[3+(-1)的n次方]/2易知,dn=1n是奇数dn=2n是偶数又由an=d1+d2+d3+...d2n,得d1+d2=d3+d4=.,所以通项公式an=3n且b2,b4为方程x
an+1=2an/an+2两边取倒数1/a(n+1)=(an+2)/2an1/a(n+1)=1/2+1/an所以1/a(n+1)-1/an=1/2所以数列{1/an}是等差数列首项为1/2,公差为1/
dn=n次根下(a1*a2*a3*a4.*an)还有,怎么出来cn了
若数列{lgan}为等差数列,可得:2lgan=lgan-1+lgan+1,即lgan2=lg(an-1•an+1),∴an2=an-1•an+1,∴数列{an}为等比数列;但数列{an}为等比数列,
根号Sn的通项公式是nSn=n^2an=Sn-Sn-1=n^2-(n-1)^2=2n-1
log2A(n+1)=log2An+1=log2[2An],则:A(n+1)=2An,则[A(n+1)]/[An]=2=常数,则数列{An}是以A1=1为首项、以q=2为公比的等比数列,得:An=2^
Sn、an、1成等差,则2an=Sn+1(n=1时,得a1=1),当n≥2时,有2a(n-1)=S(n-1)+1,则2an-2a(n-1)=an,即an/[a(n-1)]=2=常数,所以{an}是等比
由题意知2an=Sn+1/2,an>0,当n=1时,2a1=a1+1/2,解得a1=1/2,当n≥2时,Sn=2an-1/2,S(n-1)=2a(n-1)-1/2,两式相减得an=Sn-S(n-1)=