已知数列an中a1 =2,an=an-1 2n-1(n大于等于2)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 04:47:04
a(n+1)=2an/(an+1)∴1/a(n+1)=(an+1)/2an=1/2an+1/2∴1/a(n+1)-1=1/2an+1/2-1=1/2an-1/2=(1/2)(1/an-1),1/a1-
先求倒数1/a(n+1)=(an+2)/(2an)1/a(n+1)=1/2+(1/an)所以1/an是一个等差数列,公差d为1/2所以1/an=1/a1+(n-1)*d=1/a1+(n-1)/2
a(n+1)=an+lg[n/(n+1)]即a(n+1)-an=lgn-lg(n+1)将n=1,2,3,...代入,得a2-a1=lg1-lg2a3-a2=lg2-lg3.an-a(n-1)=lg(n
a(n+1)-an=2n所以a2-a1=2a3-a2=4a4-a3=6……an-a(n-1)=2(n-1)相加得an-a1=2+4+6+……+2(n-1)=n(n-1)所以当n>1时,an=n(n-1
a(n+1)=an^2+2ana(n+1)+1=(an+1)^2log2[(a(n+1)+1]=2log2[(an)+1]log2[(a(n+1)+1]/log2[an+1]=2{log2[a(n+1
∵数列{an}中,an=2n−1(n为正奇数)2n−1(n为正偶数),∴a9=29-1=28=256.S9=21-1+(2×2-1)+23-1+(2×4-1)+25-1+(2×6-1)+27-1+(2
an-3^(n+1)=2a(n-1)+3^n-3^(n+1)3^n-3^(n+1)=3^n-3*3^n=-2*3^n所以an-3^(n+1)=2a(n-1)-2*3^n=2[a(n-1)-3^n][a
∵an+1=an+2n-1,∴an-an-1=2n-2,∵a1=1,∴a2-1=1;a3-a2=2;a4-a3=22;…;an-an-1=2n-2,∴上面各式相加得,an-1=1+2+22+23+…+
解:an*a(n+1)+a(n+1)=2an两边同时除以an*(an+1)得:1+1/an=2/a(n+1)设:bn=1/an则:2b(n+1)=bn+12[b(n+1)-1]=bn-1[b(n+1)
1.bn=(3an-2)/(an-1)an=(bn-2)/(bn-3)a(n+1)=[b(n+1)-2]/[b(n+1)-3]a(n+1)=(4an-2)/(3an-1)3a(n+1)an-a(n+1
a(n+1)=an/(2an+1)1/a(n+1)=(2an+1)/an=1/an+21/a(n+1)-1/an=2,为定值.1/a1=1/3,数列{1/an}是以1/3为首项,2为公差的等差数列.1
x=anf(x)=a(n+1)代入函数方程a(n+1)=an^2+2ana(n+1)+1=an^2+2an+1=(an+1)^2满足平方递推数列定义,因此数列{an+1}是平方递推数列.a1+1=10
∵数列{log2(an+1-an3)}是公差为-1的等差数列,∴log2(an+1-an3)=log2(a2-13a1)+(n-1)(-1)=log2(1936-13×56)-n+1=-(n+1),于
an+1-an=2^nan-an-1=2^n-1a2-a1=2^1-1an-a1=2^1+2^2+2^3+...2^n-1an=2^n+1
因为2an=Sn*S(n-1)所以2(Sn-S(n-1))=Sn*S(n-1)两边同除Sn*S(n-1)整理的1/Sn-1/S(n-1)=-1/2(n>1)所以数列{1/Sn}是以1/Sn=1/a1=
a(n+1)-3=1/2a(n)-3/2=1/2(a(n)-3)所以a(n)-3是等比数列,公倍为1/2a(n)-3=(1/2)^(n-1)*(a(1)-3)所以a(n)=(1/2)^(n-1)*1+
a(n+2)+2an=3a(n+1)a(n+2)-a(n+1)=2a(n+1)-2an[a(n+2)-a(n+1)]/[a(n+1)-2an]=2∴数列{an+1-an}是等比数列a(n+1)-an=
(1)、a2=2a1/(2a1+1)=(4/3)/(4/3+1)=4/73a=2a2/(2a2+1)=8/15因为a2-a1不等于a3-a2,所以an不是等差数列又因为a2/a1不等于a3/a2,所以
sn/n=(2n-1)an(n>=1),sn=(2n^2-n)an,s(n+1)=(2n^2+3n+1)a(n+1),两者相减可得(2n+3)an+1=(2n-1)an,an=(2n-3)*a(n-1
(1)证明:由an+1=2an+1,得an=2an-1+1(n≥2),两式相减得:(an+1-an)=2(an-an-1).∵bn=an+1-an,∴bn=2bn-1.又b1=a2-a1=(2a1+1