已知数列an中a1=-2 3,其前n项和sn满足an=sn 1 sn 2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 02:12:41
已知数列{an}中,a1=1,当n≥2时,其前n项和Sn满足Sn²=an(Sn-1/2)

(1)由[S(n)]^2=a(n)[S(n)-1/2]以及a(n)=S(n)-S(n-1),n≥2得[S(n)]^2=[S(n)-S(n-1)][S(n)-1/2],n≥2整理得2S(n)S(n-1)

已知数列an中,a1=1,当n≥2时,其前n项和Sn满足Sn^2=an(Sn-1/2)

(Sn)²=[Sn-S(n-1)](Sn-1/2)(Sn)²=(Sn)²-Sn/2-SnS(n-1)+S(n-1)/2Sn+2SnS(n-1)-S(n-1)=0S(n-1

已知数列An中,其前n项和为Sn,A1=1,且An+1=2Sn 求数列an的通项公式

因为An+1=2SnAn=2S(n-1)所以A(n+1)-An=2AnA(n+1)/An=3是公比为3,首项a1=1的等比数列,An=A1*q^(n-1)即An=3^(n-1)

已知数列{an}中,a1=1,前n项和Sn=n+23an

(1)数列{an}中,a1=1,前n项和Sn=n+23an,可知S2=43a2,得3(a1+a2)=4a2,解得a2=3a1=3,由S3=53a3,得3(a1+a2+a3)=5a3,解得a3=32(a

已知数列{an}中a1=3且an+1=an+2n.求数列的通项公式

a(n+1)-an=2n所以a2-a1=2a3-a2=4a4-a3=6……an-a(n-1)=2(n-1)相加得an-a1=2+4+6+……+2(n-1)=n(n-1)所以当n>1时,an=n(n-1

已知数列{an}中,a1=2,anan+1+an+1=2an

解:an*a(n+1)+a(n+1)=2an两边同时除以an*(an+1)得:1+1/an=2/a(n+1)设:bn=1/an则:2b(n+1)=bn+12[b(n+1)-1]=bn-1[b(n+1)

已知数列An中,其前n项和为Sn,A1=1,且An+1=2Sn,求An的通项公式和Sn

因为:An+1=2Sn,则A(n-1)+1=2S(n-1)那么:2Sn-2S(n-1)=(An+1)-(A(n-1)+1)(n>=2)又因为:2Sn-2S(n-1)=2An(n>=2)所以:2An=(

已知数列 {an}中,a1=56,an+1=an-12

解题步骤多,请点:http://hi.baidu.com/%B0%D7%CF%C8%C9%F9/album/item/76e496eee56912eab2fb95ee.html

已知数列{an}中,a1

解题思路:构造数列解题过程:varSWOC={};SWOC.tip=false;try{SWOCX2.OpenFile("http://dayi.prcedu.com/include/readq.ph

若数列{An}满足An+1=An^2,则称数列{An}为“平方递推数列”,已知数列{an}中,a1=9,点(an,an+

x=anf(x)=a(n+1)代入函数方程a(n+1)=an^2+2ana(n+1)+1=an^2+2an+1=(an+1)^2满足平方递推数列定义,因此数列{an+1}是平方递推数列.a1+1=10

已知数列{an}中,a1=56

∵数列{log2(an+1-an3)}是公差为-1的等差数列,∴log2(an+1-an3)=log2(a2-13a1)+(n-1)(-1)=log2(1936-13×56)-n+1=-(n+1),于

已知数列{an中}a1=3.且an+1=an+2的n次方

an+1-an=2^nan-an-1=2^n-1a2-a1=2^1-1an-a1=2^1+2^2+2^3+...2^n-1an=2^n+1

数列an中已知a1=3,且2an=SnSn-1,求通项公式an

因为2an=Sn*S(n-1)所以2(Sn-S(n-1))=Sn*S(n-1)两边同除Sn*S(n-1)整理的1/Sn-1/S(n-1)=-1/2(n>1)所以数列{1/Sn}是以1/Sn=1/a1=

已知数列{an}中a1=1,an+1-an=3n,求数列{an}的通项公式.

此类题目采用累加法或迭代法∵an+1-an=3n(往下递推)∴an-an-1=3(n-1)an-1-an-2=3(n-2).a3-a2=3×2a2-a1=3×1以上格式左边+左边=右边+右边左边相加的

已知数列{an}中,a1=4,an+1=1/2an+3/2

a(n+1)-3=1/2a(n)-3/2=1/2(a(n)-3)所以a(n)-3是等比数列,公倍为1/2a(n)-3=(1/2)^(n-1)*(a(1)-3)所以a(n)=(1/2)^(n-1)*1+

已知数列an中,a1=1,当n≥2时,其前n项和Sn平方=an(Sn-1/2) 求Sn表达式.

题目是不是错了?经化简可得2Sn/Sn-1=1-(Sn-1/Sn),发现Sn/Sn-1无解

已知数列{an}中,Sn是其前n项和,并且Sn+1=4an+2 a1 =1 求an 通项公式

哎,看你着急的样子,我就替你解了此因果S(n+1)=4an+2Sn=4a(n-1)+2相减得:a(n+1)=4an-4a(n-1)移向得a(n+1)-2an=2(an-2a(n-1)){a(n+1)-

已知数列an中,a1=1,当n≥2时,其前n项和为Sn,满足Sn²=an(Sn-1)

让我来详细解答吧:(1)Sn²=an(Sn-1)Sn²=[sn-s(n-1)]*(sn-1)=Sn²-sn*sn(n-1)-sn+sn(n-1)sn-sn(n-1)=-s

已知数列an中,a1=1,当n≥2时,其前n项和为Sn,满足Sn²=an(Sn-1)

Sn²=an(Sn-1)Sn²=[sn-s(n-1)]*(sn-1)=Sn²-sn*sn(n-1)-sn+sn(n-1)sn-sn(n-1)=-sn*sn(n-1)两边同

在数列{an}中,已知(a1+a2+…+an)/n=(2n-1)an

sn/n=(2n-1)an(n>=1),sn=(2n^2-n)an,s(n+1)=(2n^2+3n+1)a(n+1),两者相减可得(2n+3)an+1=(2n-1)an,an=(2n-3)*a(n-1