已知数列an前n项和为sn且2sn=n² n
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 03:06:39
1.Sn=-2an+3有S(n-1)=-2a(n-1)+3则an=Sn-S(n-1)=-2an+2a(n-1)=>an=a(n-1)*2/3所以,{an}为共比数列,q=2/32.Sn=-2an+3有
1、Sn=(a1+an)n/2所以nan/Sn=2an/(a1+an)=2[a1+(n-1)d]/[2a1+(n-1)d]上下除以(n-1)=2[a1/(n-1)+d]/[2a1/(n-1)+d]n-
n=1时,S1=a1=2a1-1,a1=1n≥2时,an=Sn-S(n-1)=(2an-1)-(2a(n-1)-1)an=2a(n-1),故an=2^(n-1).
可以用an与Sn之间的关系求当n》2时an=Sn-S(n-1)=2an-2a(n-1)即an=2a(n-1)即数列{an}是等比数列当n=1时a1=S1=2a1-1a1=1an=2的n-1次方
a(1)=s(1)=1-5a(1)-85,6a(1)=-84,a(1)=-14.a(n+1)=s(n+1)-s(n)=(n+1)-5a(n+1)-85-[n-5a(n)-85]=1-5a(n+1)+5
1.a(n+1)=sn/2,a(n+2)=s(n+1)/2,后式减前式得:a(n+2)-a(n+1)=a(n+1)/2,a(n+2)/a(n+1)=3/2,数列a(n+1)为公比q=3/2,首项a2=
先列式4*(S1)=(a1)*(a2).14*(S2)=(a2)*(a3).2...4*(Sn)=(an)*(a(n+1)).n2式-1式,3式-2式,.可以得出a3-a1=4a4-a2=4...an
∵a(n+1)=1/2Sn.∴n≥2时,an=1/2S(n-1)∴a(n+1)-an=1/2[Sn-S(n-1)]=1/2an∴a(n+1)=3/2an∴a(n+1)/an=3/2∵a1=1,∴a2=
Sn=n-5an-85(1)S(n+1)=n+1-5a(n+1)-85(2)(2)-(1)整理得6a(n+1)=1+5an即a(n+1)-1=(5/6)(an-1)又由S1=a1=1-5a1-85得a
1楼貌似错了!(a1^2-3a1=6a1与An^2+3An=6Sn矛盾)An^2+3An=6SnA(n+1)^2+3A(n+1)=6S(n+1)后减前得A(n+1)^2+3A(n+1)-An^2-3A
(1)证明:∵Sn=n-5an-85,n∈N*(1)∴Sn+1=(n+1)-5an+1-85(2),由(2)-(1)可得:an+1=1-5(an+1-an),即:an+1-1=56(an-1),从而{
1.证:Sn=(3an-n)/2Sn-1=[3a(n-1)-(n-1)]/2an=Sn-Sn-1=[3an-3a(n-1)-1]/2an=3a(n-1)+1an+1/2=3a(n-1)+3/2=3[a
Sn+an=n^2+3n+5/2①当n=1时,S1+a1=1^2+3*1+5/2=13/2而S1=a1,所以2a1=13/2,即a1=13/4,所以a1-1=9/4;又S(n-1)+a(n-1)=(n
Sn=n(an+1)/2S(n+1)=(n+1)[a(n+1)+1]/2用下式减上式a(n+1)=[(n+1)a(n+1)-nan+1]/2即2a(n+1)=[(n+1)a(n+1)-nan+1]即(
因为Sn+Sn-1=3an所以Sn-1+Sn-1+an=3an2Sn-1=2anSn-1=an因为Sn=an+1所以Sn-Sn-1=an+1-anan=an+1-an2an=an+1an+1/an=2
(Ⅰ)a1=3,当n≥2时,Sn−1=23an−1+1,∴n≥2时,an=Sn−Sn−1=23an−23an−1,∴n≥2时,anan−1=−2∴数列an是首项为a1=3,公比为q=-2的等比数列,∴
2Sn=n²+n则n≥2时2S(n-1)=(n-1)²+(n-1)=n²-n相减2an=2nan=n2a1=2S1=1+1=2a1=1符合n≥2的式子所以an=n
因为Sn=3n^2+5nS(n-1)=3(n-1)^2+5(n-1)两式相减所以an=6n-3+5=6n+2所以an=8+6(n-1),所以an是以8为第一项,公差为6的等差数列.
解题思路:考查数列的通项,考查等差数列的证明,考查数列的求和,考查存在性问题的探究,考查分离参数法的运用解题过程:
方法:往前面递推一项a1=2s1-1=2a1-1,则a1=1an=2Sn-1;a(n+1)=2S(n+1)-1a(n+1)-an=2【S(n+1)-Sn】=2a(n+1)∴a(n+1)=-an所以a8