已知数列{an}满足P(an,an 1)在直线x-y 2=0上,

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 18:53:10
已知数列{an}满足a

由an+1+an−1an+1−an+1=n可得an+1+an-1=nan+1-nan+n∴(1-n)an+1+(1+n)an=1+n∴an+1=n+1n−1an−n+1n−1=1n−1(an−1)×(

已知数列an满足an=1+2+...+n,且1/a1+1/a2+...+1/an

an=1+2+3+…+n=[n(n+1)]/2则:1/(an)=2/[n(n+1)]=2[(1/n)-1/(n+1)],所以:M=1/(a1)+1/(a2)+1/(a3)+…+1/(an)=2[1/1

数列{an}满足a

∵an+an+1=12(n∈N*),a1=−12,S2011=a1+(a2+a3)+(a4+a5)+…+(a2010+a2011)=-12+12+…+12=−12+12×1005=502故答案为:50

数列题,已知数列{an}满足a1=1,an>0,Sn是数列{an}的前n项和,对任意的n属于N,有2Sn=p(2an&s

(1)因p为常数,a1=1,故当n=1时,2Sn=2a1=2=p(2*1+1-1)=2p,所以,p=1.Sn=n(an+a1)/2=n(an+1)/22Sn=n(an+1)=2an²+an-

已知数列{an}满足a1=100,an+1-an=2n,则a

a2-a1=2,a3-a2=4,…an+1-an=2n,这n个式子相加,就有an+1=100+n(n+1),即an=n(n-1)+100=n2-n+100,∴ann=n+100n-1≥2n•100n-

已知数列{an}满足an+1=2an+n+1(n∈N*).

(1)由已知a2=2a1+2,a3=2a2+3=4a1+7,若{an}是等差数列,则2a2=a1+a3,即4a1+4=5a1+7,得a1=-3,a2=-4,故d=-1.  &nbs

已知数列{an}满足a1=1,a2=3,an+2=3an+1-2an求an

由an+2=3an+1-2an可得an+2-an+1=2(an+1-an)因为a2-a1=2,所以an+1-an不会等于0,则an+1-an是以2为公比的等比数列由上可得an+1-an=2^nan-a

已知数列{an}满足:a1+a2+a3+.+an=n^2,求数列{an}的通项an.

由题意,Sn=n^2,则a1=1,S(n-1)=(n-1)^2=n^2-2n+1,n>=2an=Sn-S(n-1)=n^2-n^2+2n-1=2n-1,n>=2由于当n=1时,2n-1=1=a1所以,

已知数列{an}满足a1=1/2,an+1=3an+1,求数列{an}通项公式

a(n+1)=3an+1a(n+1)+1/2=3an+3/2=3(an+1/2)[a(n+1)+1/2]/(an+1/2)=3,为定值.a1+1/2=1/2+1/2=1数列{an+1/2}是以1为首项

已知数列{an}满足a1=2,an+1-an=an+1*an,那么a31等于

两边同除an*an+1得:1/an-1/an+1=11/an+1-1/an=-1,所以数列{1/an}为等差数列1/an=1/a1+(-1)*(n-1)1/a31=1/2+(-1)*301/a31=-

若数列{An}满足An+1=An^2,则称数列{An}为“平方递推数列”,已知数列{an}中,a1=9,点(an,an+

x=anf(x)=a(n+1)代入函数方程a(n+1)=an^2+2ana(n+1)+1=an^2+2an+1=(an+1)^2满足平方递推数列定义,因此数列{an+1}是平方递推数列.a1+1=10

已知数列an满足 a1=1/2,an+1=3an/an+3求证1/an为等差数列

证明:取倒数1/an+1=an+3/3an=1/3+1/an1/an+1-1/an=1/3a1=1/21/a1=2{1/an}2首项1/3公差等差数列an=3/(5+n)

已知数列{an}满足an+1=2an+3.5^n,a1=6.求an

a(n+1)-2an=3.5^n,则a2-2a1=3.5^1a3-2a2=3.5^2.a(n+1)-2an=3.5^n以上式子相加,得a(n+1)-a1-Sn=3.5+3.5^2+...+3.5^n=

已知数列{An}满足A1=1,An+1=2An+2^n.求证数列An/2是等差数列

你应该是抄错题了吧--A(n+1)=2An+2^n等式两边同时除以2^(n+1)有A(n+1)/2^n+1=An/2^n+1/2设Bn=An/2^n则B(n+1)=Bn+0.5Bn是等差数列即An/2

已知数列{an}满足a1=2,an+1=2an/an+2,则an等于多少

a(n+1)=2a(n)/[a(n)+2],a(1)=2>0,由归纳法知a(n)>0.1/a(n+1)=[a(n)+2]/[2a(n)]=1/2+1/a(n),{1/a(n)}是首项为1/a(1)=1

已知数列an满足a1=1,1/an+1=根号1/an^2+2,an>0,求an

因为不清楚你写的到底是怎样,我把我理解出的可能的两种题目都写出来.①假定原题为1/(An+1)=√[1/(An²+2)]两边同时平方,有1/(An+1)²=1/(An²+

已知数列{an}满足a1=4,an+1=an+p.3^n+1(n属于N+,P为常数),a1,a2+6,a3成等差数列.

经化简得a1a2a3分别为a1=4a2=a1+3p+1=5+3p a3=a1+12p+2=6+12pa1,a2+6,a3成等差数列.的2a2+12=a1+a3即22+6p=10+12p解得p

已知数列{an}满足an+1=an+n,a1等于1,则an=?

A2=A1+1A3=A2+2A4=A3+3.An=A(n-1)+(N-1)左式上下相加=右式上下相加An=A1+[1+2+3+...+(N-1)]An=1+[N(N-1)]/2