已知数列满足a1=76,点(2Sn an,Sn 1)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 20:47:40
已知数列an满足an=1+2+...+n,且1/a1+1/a2+...+1/an

an=1+2+3+…+n=[n(n+1)]/2则:1/(an)=2/[n(n+1)]=2[(1/n)-1/(n+1)],所以:M=1/(a1)+1/(a2)+1/(a3)+…+1/(an)=2[1/1

已知数列{An}满足A1=1,A=3(n-1)+A(n>/2)

1a2=4a3=13我想这个你应该会求吧.2观察a-a=3^(n-1)可采用累加法a-a=3^(n-1)a-a=3^(n-2).a-a=3把上面的式子全部加起来,可得a-a=(3^n-3)/2解得a=

已知数列{an}满足a1=100,an+1-an=2n,则a

a2-a1=2,a3-a2=4,…an+1-an=2n,这n个式子相加,就有an+1=100+n(n+1),即an=n(n-1)+100=n2-n+100,∴ann=n+100n-1≥2n•100n-

已知数列{an}满足an=2an-1+2n+2,a1=2

你把这个数列看成俩部分a(n1)=2a(n1-1)a(n2)=2n+2an=(an1)+(an2)算算看

已知数列{an}满足a1=4/3,2-a(n+1)=12/an+6

2-a(n+1)=12/(an+6)a(n+1)=2an/(an+6)1/a(n+1)=(an+6)/[2an]1/a(n+1)+1/4=3(1/an+1/4)[1/a(n+1)+1/4]/(1/an

已知数列{an}满足a1=1,an+1=2an+2.

an+1=2an+2,an=-1,把an=-1代入bn=2^n/an,得,bn=-2^nb2-b1=-2^*2-(-2)=-6,所以{bn}是等差数列

若数列{An}满足An+1=An^2,则称数列{An}为“平方递推数列”,已知数列{an}中,a1=9,点(an,an+

x=anf(x)=a(n+1)代入函数方程a(n+1)=an^2+2ana(n+1)+1=an^2+2an+1=(an+1)^2满足平方递推数列定义,因此数列{an+1}是平方递推数列.a1+1=10

已知数列an满足条件a1=-2 an+1=2an+1则a5

a[n+1]=2a[n]+1a[n+1]+1=2(a[n]+1)则{a[n]+1}是公比为2的等比数列a[1]+1=-2+1=-1所以a[n]+1=(-1)*2^(n-1)a[n]=-2^(n-1)-

已知数列{an}满足an+1=2an-1,a1=3,

(Ⅰ)依题意有an+1-1=2an-2且a1-1=2,所以an+1−1an−1=2所以数列{an-1}是等比数列;(Ⅱ)由(Ⅰ)知an-1=(a1-1)2n-1,即an-1=2n,所以an=2n+1而

已知数列{an}满足an+1=2an+3.5^n,a1=6.求an

a(n+1)-2an=3.5^n,则a2-2a1=3.5^1a3-2a2=3.5^2.a(n+1)-2an=3.5^n以上式子相加,得a(n+1)-a1-Sn=3.5+3.5^2+...+3.5^n=

已知数列{an}满足a1=2,an+1=2an+3.

(1)∵a1=2,an+1=2an+3.∴an+1+3=2(an+3),a1+3=5∴数列{an+3}是以5为首项,以2为公比的等比数列∴an+3=5•2n−1∴an=5•2n−1−3(2)∵nan=

已知数列{an}满足An+1=2^nAn,且A1=1,则通项an

解An+1/An=2^n所以A2/A1=2所以数列是以1为首相2为公比的等比数列所以通向公式an=2^(n-1)

已知数列{an}满足a1+a2+a3+...+an=n^2+2n.(1)求a1,a2,a3,a4

a1+a2+a3+...+an=n^2+2n可得:Sn=a1+a2+a3+...+an=n^2+2n当n=1时有:a1=S1=1+2=3当n≥2时有:an=Sn-S(n-1)=n^2+2n-(n-1)

已知数列{AN}满足A1=1,AN+1=2AN+2的N次方.

1.a_(1)=1,a_(n+1)=2a_(n)+2^(n)----------------1b_(n)=a_(n)/2^(n)将式子1左右两边同时除以2^(n+1),则:b_(n+1)=b_(n)+

已知数列{an}满足,a1=2,a(n+1)=3根号an,求通项an

a1=2>0假设当n=k(k∈N+)时,ak>0,则a(k+1)=3√ak>0k为任意正整数,因此对于任意正整数n,an恒>0,数列各项均为正.a(n+1)=3√anlog3[a(n+1)]=log3

已知数列{an}满足a1=1;an=a1+2a2+3a3+...+(n-1)a(n-1);

a2=a1+2a2=1+2a2得a2=-1an=a1+2a2+3a3+...+(n-2)a(n-2)+(n-1)a(n-1)a(n-1)=a1+2a2+3a3+...+(n-2)a(n-2)两式相减:

已知数列{an}满足a1=1/2,sn=n^2an,求通项an

∵s[n]=n^2a[n]∴s[n+1]=(n+1)^2a[n+1]将上述两式相减,得:a[n+1]=(n+1)^2a[n+1]-n^2a[n](n^2+2n)a[n+1]=n^2a[n]即:a[n+

已知数列{an},{bn},满足a1=2,b1=1

解an=3/4a(n-1)+1/4b(n-1)+1(1)bn=1/4a(n-1)+3/4b(n-1)+1(2)(1)+(2)得an+bn=a(n-1)+b(n-1)+2,(n>=2)),所以数列an+

已知数列{an},满足a1=1/2,Sn=n²×an,求an

/>n≥2时,Sn=n²×anS(n-1)=(n-1)²×a(n-1)an=Sn-S(n-1)=n²×an-(n-1)²×a(n-1)(n²-1)an