已知曲线c的参数方程是x=cosa y=1=sina
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:53:08
x=√(4-y²)>0x²=4-y²x²+y²=2²曲线C是圆心在原点,半径为2,图像在y轴右边的半圆.
曲线C的参数方程是x=cosa,y=1+sina(a为参数)即x=cosa,y-1=sina平方相加普通方程是x²+(y-1)²=1即x²+y²-2y+1=0即
1.普通方程x^2+y^2=12.9x'^2+4y'^2=1C'9x'^2+4y'^2=11=9x'^2+4y'^2>=2√(9x'^2*4y'^2)=12x'y'x'y'
解(x-2)²+y²=1圆心(2.0)到直线3x-4y+4=0的距离为d=/3×2+4//√3²+(-4)²=10/5=2∴直线与圆相离∴圆C上的点到直线的距离
(1)曲C的极坐标方程可化为:ρ2=2ρsinθ,又x2+y2=ρ2,x=ρcosθ,y=ρsinθ.所以,曲C的直角坐标方程为:x2+y2-2y=0.(2)将直线L的参数方程化为直角坐标方程得:y=
(X/4)^(2/3)+(Y/4)^(2/3)=1A梅花图形(Y/4)^(2/3)=1-(X/4)^(2/3)=(-X/4)^(2/3)X轴对称,同理,关于Y轴对称θ1=π+a,θ2=ax1=-4co
根据参数方程可知圆的圆心和半径,再从原点向此圆引两条切线的斜率便是t的两个极值如果圆心在圆内那没什么好说了
由cos^2θ+sin^2θ=1可得x^2+(y+2)^2=1即C的方程为x^2+(y+2)^2=1x=tcosa,y=tsina可化为y=tanα*x很明显过原点的直线由几何关系,斜率为30°或15
先求出曲线方程:(x-2)^2+y^2/4=1a=1b=2c=根号3e=c/b=根号3/2准线:p=a^2/c=根号3/3再根据极坐标定义ρ=e*P/(1-e*cosθ)=0.5/(1-根号3/2*c
先化为普通方程:x/2=cosθ,y/3=sinθ平方相加x²/4+y²/9=1再代入A(2,0),B(-根号3,3/2)看是否满足
由参数方程消去参数t就可以了.由x=1+2t得到t=(x-1)/2把它代入y=t^2中:y=[(x-1)/2]^2=(x^2-2x+1)/4即:x^2-2x-4y+1=0
已知曲线C的极坐标方程是ρ=2sinθ,直线L的参数方程是x=-3/5t+2,y=4/将直线l的参数方程化为直角坐标方程,得y=-4/3(x-2),令y=0,得x=2
∵曲线C的参数方程为x=1+cosθy=sinθ(θ为参数),消去参数化为普通方程为(x-1)2+y2=1,表示以(1,0)为圆心,半径等于1的圆.圆心到直线x-y+1=0的距离为d=|1−0+1|2
sin$方/cos$方=y方/161/cos$方=(x-1)方/9你自己把这个式子写出来平方我不会打再用下式减去上式得出一个双曲线方程(x-1)方/9-y方/16=1为普通双曲线向右品以一个单位渐近线
根据曲线C的参数方程x=2+2cosθy=2sinθ(θ为参数),得(x-2)2+y2=2,该曲线对应的图形为一个圆,该圆的圆心为(2,0),半径r=2,设圆心到直线的距离为d,∴d=24=1,∴弦长
∵曲线C的参数方程是x=3ty=t22+1(t为参数),点M(6,a)在曲线C上∴6=3ta=t22+1∴t=23,a=7故答案为:7
∵曲线C的参数方程是x=2(t+1t)y=3(t-1t)(t为参数),∴t+1t=x2,t-1t=y3,平方相减可得x24-y29=4,即x216-y236=1,故答案为x216-y236=1.
⑴、A的极坐标为(2,π/3)——》A的直角坐标为(1,√3),B的极坐标为(2,5π/6)——》B的直角坐标为(-√3,1),C的极坐标为(2,4π/3)——》A的直角坐标为(-1,-√3),D的极
(x-根号3)^2+(y-1)^2=3再问:什么意思哦再答:cosx的平方和sinx的平方和是1,利用这个公式得x-根号3=根号3*cosxy-1=根号3*sinx右侧平方和相加得3,对应左侧就是我的
是不是问错了?t1*t2=0那二者其一必为0,则A/B中有一点为原点O,角AOB=0