已知椭圆x2 2 y2=1及B(0,-2),点过左焦点...
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 16:40:08
点差法设A(x1,y1)B(x2,y2)P(x0,y0)所以x0=(x1+x2)/2y0=(y1+y2)/2A、B在椭圆上所以x1^2/2+y^2=1x2^2/2+y2^2=1相减所以(x1+x2)(
设直线房成为y=kx+2在于椭圆联立方程组得关于x的一元二次方程设P坐标(x,y)A坐标(x1.y1)B坐标(x2,y2)根据方程求得x1x2和,积还有y1y2和,积再利用P点与A,B坐标的关系求解再
设C1与y=2x在第一象限的交点的坐标为D(x,2x)那么有OD=根号(x^2+4x^2)=根号5*x所以,则对称性知,直线y=2x与C1相交所截得的弦长=2OD=2x*根号5
离心率定义是c/a,也就是(根号(a²-b²))/a,这个东西等于根3/2,也就是说a/b=2.这样第一问就很简单了.第二问应该就是暴力解方程.我看不出什么巧妙的几何解法.把M和P
(1)0<e<(√2)/2.(2)不能.
c^2=a^2-b^2=2-1=1即F1坐标是(-1,0),F2(1,0)那么F1B的方程是y=-2x-2,x=(-y-2)/2代入x^2/2+y^2=1(-y-2)^2/8+y^2=1y^2+4y+
解题思路:考查了椭圆的方程、性质和面积,以及平面区域、几何概型的应用。解题过程:
1)设F2为另一焦点,易知y轴将线段|AB|,|FF2|垂直平分根据对称性,可知AFF1B四点构成等腰梯形,对角线相等,有AF1=BF,所以AF+BF=AF+AF1=2a,为定值2)由已知A(-a,0
谈谈我对本题的看法,第一问跟楼上做法一样,(1)由点F(-ae,0),点A(0,b)及b=根号(1-e2)a得直线FA的方程为x/-ae+y/根号(1-e2)a=1,即根号(1-e2)x-ey+ae根
(1)由点F(-ae,0),点A(0,b)及b=根号(1-e2)a得直线FA的方程为x/-ae+y/根号(1-e2)a=1,即根号(1-e2)x-ey+ae根号(1-e2)=0,(2分)∵原点O到直线
F(-c,0),A(0,b),所以直线FA的方程为x/(-c)+y/b=1,即bx-cy+bc=0原点O到直线FA的距离为|bc|/√(b²+c²)=(√2/2)b又b²
解题思路:主要考查你对椭圆的性质(顶点、范围、对称性、离心率),圆锥曲线综合等考点的理解。解题过程:
据题意得椭圆的焦点为:F1(-1,0),F2(1,0)设过左焦点F1与点B的直线为:y=kx+b则:-k+b=0,0+b=-2解得:k=-2,b=-2∴过左焦点F1与点B的直线为:y=-2x-2∵过左
A(x1,y1)B(x2,y2)PF1:y=-2x-2x²/2+y²=1联立方程得9y²+4y-4=0所以得y1+y2=-4/9y1y2=-4/9所以S△=[2c(|y1
解由椭圆x²/4+y²=1,设椭圆上的任一点P(2cosa,sina)故/PA/=√(2cosa-0)^2+(sina-2)^2=√(4cos^2a+sin^2a-4sina+4)
分析:设直线OQ的斜率为k,则其方程为y=kx,设点Q的坐标为(x0,y0),与椭圆方程联立,x0²=a²b²/(k²a²+b²),根据|A
你是不是搞错了.你那个圆Gx^2+(y-1)^2=2根号2+1这样一个圆半径的平方都带根号,这样半径很难表示,计算呀,圆心(0,1)这样b-1=rc^2+1=r^2因为半径很难表示,就放弃了,后面没看
直线交Y轴于点P,Q两点,你画个出来给我看看.除非是分别交X,Y轴于P,Q点.这题很常见的,你随便找本同步参考资料上就有的.自己做也很简单,就是在电脑上打出来不太方便.
PF1=x1/2*x*(10-x)sin60'=3*根3x*(10-x)=12F1F2^2=x^2+(10-x)^2-x(10-x)=642c=8c=4e=4/5
FA的方程为:bx-cy+bc=0.原点到FA的距离=[bc]/√(b^2+c^2)=(√2/2)cb=c过F(-c,0)且与2x+y=0垂直的直线方程为:x=2y-c,与2x+y=0的交点为:(-c