已知椭圆x2 a2 y2 b2 1过焦点垂直于长轴的弦长为1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 17:03:27
过椭圆(求数学帝)过椭圆左焦点F1且斜率为1的直线与该椭圆相交于P.Q两点,已知点P的坐标是(-4,-1),求该椭圆的标

设椭圆方程x^2/a^2+y^2/b^2=1,直线方程为y=x+3,y=0,x=-3,焦点F1(-3,0),c=3,a^2-b^2=c^2,16/(9+b^2)+1/b^2=1,b^4-8b^2-9=

已知F1,F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A,B两点,

根据题意得到一点(c,y)c²/a²+y²/b²=1的:y²=(a²-c²)²/a²设AB交X轴于O那么有(2

已知F1 F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A.B两点,若三角形ABF2是

再问:答案给的是√2-1啊。再问:答案给的是√2-1啊。再答:更正:

已知一个椭圆过两点可以怎么求椭圆的标准方程

两点无法确定一个圆(包括椭圆),需要三点才能确定.不过如果轴线在坐标轴就好办了,根据椭圆方程,x^2/a^2+x^2/b^2=1,代入两点坐标,解2元二次方程,就可以得到a,b,去掉负值,就得到结果了

已知正方形ABCD,已AC为焦点且过点B的椭圆离心率?

两焦点间的距离是:2c=边长×√2椭圆上的点到两焦点的距离和是:2a=边长×2离心率是c/a=√2÷2=二分之跟二

过椭圆x

设弦两端点坐标为(x1,y1),(x2.y2),诸弦中点坐标为(x,y).弦所在直线斜率为kx219+y214=1x229+y224=1两式相减得;19(x1+x2)(x1-x2)+14(y1+y2)

已知椭圆上任意一点(x0,y0),怎么求过这一点的切线方程?

设椭圆方程为x^2/a^2+y^2/b^2=1求导得2x/a^2+2yy'/b^2=02yy'/b^2=-2x/a^2y'=-b^2x/a^2y把(x0,y0)代入x与yy'=k=-b^2x0/a^2

已知椭圆方程和椭圆上一点Q(a,b) 求过点Q的椭圆切线方程

椭圆的切线就是跟椭圆只有一个交点的直线而不一定垂直于Q和椭圆中心的连线求法是把设的直线方程带入椭圆中,令判别式=0来求当然结论很简单过点Q(x0,y0)的椭圆切线方程xx0/a^2+yy0/b^2=1

已知椭圆 上的点到椭圆右焦点 的最大距离为 ,离心率 ,直线 过点 与椭圆 交于 两点.

条件没有,帮不了你再问:已完善。再答:(1)a+c=√3+1,e=c/a=√3/3联立得a=√3,c=1b²=a²-c²,b=√2,自己代入原方程即可(2)当L斜率不存在

已知斜率为1的直线l过椭圆x^2/4+y^2=1

在一个直角三角形中运用勾股定理,再根据斜率是倾斜角的正切

已知椭圆x^2+2y^2=1,点A(-1,0).过A点做直线交椭圆于P,Q.求证:PQ恒过定点

设p(a,b),Q(c,d),直线为Ax+By=1a^2+2b^2=1b=[(1-a^2)/2]^(1/2)c^2+2d^2=1d=[1-c^2)/2]^(1/2)把点A代入直线-A=1A=-1所以直

已知两焦点(-3,0) (3,0) 且椭圆过(3,16/5),求椭圆的方程

F1(-3,0)F2(3,0)∴焦点在x轴上,且c=3∵椭圆过P(3,16/5)|PF2|=16/5|PF1|²=(3+3)²+(16/5)²=6²+(16/5

已知椭圆过两点(1,-2),(3,2),求椭圆的标准方程

设椭圆的标准方程x^2/a^2+y^2/b^2=1代(1,-2),(3,2),入椭圆的标准方程1/a^2+4/b^2=19/a^2+4/b^2=1题目有误

已知椭圆x²/2+y²=1,求过椭圆左焦点f引椭圆的割线,求截得弦中点p的轨迹方程

一:已知椭圆(X^2/2)+y^2=1.1.过椭圆的左焦点F引椭圆的割线求截得的弦的中点P的轨迹方程.2.求斜率为2的平行弦的中点Q的轨迹方程左焦点F(-1,0)过椭圆的左焦点F引椭圆的割线y=k(x

求椭圆的标准方程已知椭圆的长轴长是短轴长的2倍,切过点(-2,4),求椭圆的标准方程

椭圆的长轴长是短轴长的2倍a=2b1.设椭圆的标准方程为x^2/a^2+y^2/b^2=1x^2/4b^2+y^2/b^2=1代点(-2,4)入方程得b^2=17a^2=68椭圆的标准方程为x^2/6

已知椭圆的中心在原点,且椭圆过点P(3,2),焦点在坐标轴上,长轴长是短轴长的3倍,求椭圆的方程.

由题设可知,椭圆的方程是标准方程.(1)当焦点在x轴上时,设椭圆方程为x2a2+y2b2=1(a>b>0)则2a=3×2b9a2+4b2=1,解此方程组得a2=45b2=5此时椭圆的方程是x245+y

已知椭圆的中心在坐标原点O,长轴长2根号2,离心率e=根号2/2,过右焦点的直线l焦椭圆于P,Q两点

2a=2√2a=√2e=c/a=√2/2c=1b=1PQ=(2ab²)/(a²-c²sina)=2√2/(2-sina)当sina=-1的时候PQ有最大值2√2/3注:利

已知椭圆过点(根号3,0)且与椭圆(x^2/4)+(y^2/9)=1的焦点相同,则这个椭圆的标准方程

=√3,c^2=9-4=5=a^2-b^2=a^2-3,所以a=2√2,故椭圆的标准方程是x^2/3+y^2/8=1

已知椭圆的中心在原点,且椭圆过点P(3,2),焦点在坐标轴上,长轴长是短轴长的3倍,求椭圆的方程.要过程

设焦点在X轴上,则椭圆方程x^2/9a^2+y^2/a^2=19/9a^2+4/a^2=1a^2=5椭圆方程为x^2/45+y^2/5=1设焦点在y轴上,则椭圆方程x^2/a^2+y^2/9a^2=1