已知椭圆x^2 4 y^2=1的焦点F1.F2,点M在该椭圆上,且

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 18:17:40
已知椭圆4x^2+y^2=1及直线y=x+m,求椭圆截得的最长弦所在的直线方程.

要求椭圆截得的最长弦那得用弦长公式根号下【(y2-y1)方+(x2-x1)方】再结合y=x+m,就化简成根号下【2(x2-x1)方】=【2(x2+x1)方-8x1x2】所以只需求出两根和和两根积就可以

已知椭圆x^2+y^2/4=1/4及直线y=x+m

椭圆x^2+y^2/4=1/4及直线y=x+m⑴当直线和椭圆有共公点,求实数m的取值范围.y=x+m代入椭圆方程中得:4x^2+x^2+2mx+m^2-1=05x^2+2mx+m^2-1=0判别式=4

已知椭圆X^/4+Y^/9=1,一组平行直线的斜率是3/2?

为了得你这十分真的不值,但是还是给你做了1.设直线为y=(3/2)x+k,代入椭圆方程得2+(k/3)/x+k~2/9=1,计算得塔即b~2-4ac=0时k=3倍根号2所以当-3倍根号2

已知A1A2是椭圆X^2/25+Y^2/16=1长轴上的两个顶点,P是椭圆上

以线段MN为直径的圆恒经过椭圆的焦点.不妨以右焦点F2(3,0)为例说明.设P(5cosa,4sina),A1(-5,0),A2(5,0)右准线的方程X=25/3A1P的方程为y=(4sina/(5c

已知斜率为1的直线l过椭圆x^2/4+y^2=1

在一个直角三角形中运用勾股定理,再根据斜率是倾斜角的正切

已知椭圆x^2/25+y^2/9=1 P是椭圆上一点

1、就是先设所求点位(x,y),然后找出x,y与已知方程对应曲线点A的关系(将其上的点用x.y表示),然后将对应点A的x,y表示的坐标带入方程化简后x,y的函数关系就是所求点的轨迹可设M(x,y),则

已知 F1F2是椭圆 X^2/4+y^2=1的两个焦点,P 是椭圆上的点

答案为:1这一题只要你学了焦半径就很简单.首先e=椭圆上一点倒左(右)焦点的距离/这一点到左(右)准线的距离(这就是焦半径的公式).所以你设P(x,y)所以:绝对值PF1=a+ex绝对值PF2=a-e

已知椭圆C:4x^2+y^2=1及直线y=x+m.

代入5x^2+2mx+m^2-1=0有公共点则方程有解所以4m^2-20(m^2-1)>=0m^2

已知椭圆公式 求周长椭圆公式为 (x^2)/20+(y^2)/13=1,求椭圆的周长.(得到近似值即可)

椭圆周长公式无法表示为初等函数,只有近似计算公式(有很多,给一个简单的):C≈π(3a+3b-√[(3a+b)(a+3b)])题目中a=√20,b=√13代入计算得到:C≈25.449873

已知椭圆4x^2+y^2=1的焦点及直线y=x+m,

设直线与椭圆相交的两点为(x1,y1)(x2,y2),不妨设x1>x2∴(2/5)√10=√2(x1-x2),x1-x2=(2/5)√5把y=x+m代入椭圆方程可以得到5x²+2mx+m&#

已知椭圆x²/2+y²=1,求过椭圆左焦点f引椭圆的割线,求截得弦中点p的轨迹方程

一:已知椭圆(X^2/2)+y^2=1.1.过椭圆的左焦点F引椭圆的割线求截得的弦的中点P的轨迹方程.2.求斜率为2的平行弦的中点Q的轨迹方程左焦点F(-1,0)过椭圆的左焦点F引椭圆的割线y=k(x

已知椭圆x^2/16+y^2/8=1……高二的数学题!

不知道,自己等老师讲吧!

已知椭圆4x^2+y^2=1,斜率为2的直线交椭圆于AB两点

解题思路:椭圆解题过程:见附件最终答案:略

已知椭圆与双曲线y^2-x^2=1有相同焦点,且椭圆经过点(-3/2,5/2),求椭圆的标准方程

此椭圆焦点在Y轴上,且C=2,又有题意及椭圆的第一定义可求椭圆的长轴长2a=根号[(-3/2)^2+(5/2+2)^2]+根号[(-3/2)^2+(5/2-2)^2]=2根号10,即a=更号10,故可

已知椭圆过点(根号3,0)且与椭圆(x^2/4)+(y^2/9)=1的焦点相同,则这个椭圆的标准方程

=√3,c^2=9-4=5=a^2-b^2=a^2-3,所以a=2√2,故椭圆的标准方程是x^2/3+y^2/8=1

1、已知椭圆X^2/9+Y^2/5=1的焦点坐标为?

1、(负根号14,0)(根号14,0)

设F1,F2,是椭圆x^2/36+y^2/24=1的两个焦点,P为椭圆上的一点,已知角F1PF2=60°,

a=6,c=2√3设|PF1|=m,|PF2|=nm+n=2a=12两边平方144=m²+n²+2mn①(2c)²=m²+n²-2mncos60°48

一道关于椭圆的题已知F1,F2是椭圆X^2/25+Y^2/b^2=1(0

PF1=x1/2*x*(10-x)sin60'=3*根3x*(10-x)=12F1F2^2=x^2+(10-x)^2-x(10-x)=642c=8c=4e=4/5

已知椭圆X²/16+Y²/4=1,求该椭圆上的点到直线X+2Y-根号2=0的最大距离

设X+2Y+b=0是与X+2Y-根号2=0平行的椭圆的切线把x=-b-2y代入X²/16+Y²/4=1得:(-b-2y)^2+4y^2=16即:8y^2+4by+b^2-16=0判