已知椭圆以及椭圆内一点P(4.2)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 16:51:39
连接点P和椭圆的右焦点(不妨记为F2)由向量OQ=1/2(OP向量+OF向量)可知Q为PF的中点.又点O为FF2的中点,所以OQ为三角形FPF2的中位线所以PF2=2OQ=8,所以PF=2a-PF2=
设点P(x',y')(x'>0,y'>0),则过点P的切线方程为x‘x/a^2+y’y/b^2=1令x=0,则y=b^2/y’,M(0,b^2/y’)令y=0,则x=a^2/x',N(a^2/x',0
椭圆:x²/9+y²/5=1a^2=9,c^2=9-5=4F2(2,0)△PAF2中,|PA|-|PF2|≤|AF2|=√2又|PF1|+|PF2|=2a=6∴|PA|+|PF1|
a=5,b=4按定义,|PF1|+|PF2|=2a=10
用点差法解决.设弦的两个端点是A(x1,y1),B(x2,y2)则x1^2/36+y1^2/9=1,x2^2/36+y2^2/9=1相减得x1^2-x2^2+4y1^2-4y2^2=0移项后因式分解可
设以点P为中点的弦所在直线与椭圆相交于点A(x1,y1),B(x2,y2),斜率为k.则x2136+y219=1,x2236+y229=1,两式相减得(x1+x2)(x1−x2)36+(y1+y2)(
1)PF1^2+PF2^2-2PF1PF2cos60=F1F2^2PF1^2+PF2^2-PF1PF2=4c^2(PF1+PF2)^2-3PF1PF2=4c^2PF1PF2=(4a^2-4c^2)/3
本题可以考虑用函数方法求解,为减少计算,不妨采用椭圆的参数方程设点易知a^2=4,b^2=3,则c=1,于是焦点F坐标为(1,0)令M(2cosα,√3sinα),这里α为离心角,取值范围为[0,2π
设F1为椭圆左焦点,3|MF|=6a-3|MF1|,所以|MP|+3|MF|=|MP|+6a-3|MF1|,要最小,就要|MP|-3|MF1|的值最小,当M在F1P延长线上时最小,带入就可以求解了,你
1、就是先设所求点位(x,y),然后找出x,y与已知方程对应曲线点A的关系(将其上的点用x.y表示),然后将对应点A的x,y表示的坐标带入方程化简后x,y的函数关系就是所求点的轨迹可设M(x,y),则
设椭圆方程为 x2a2+y2b2=1(a>b>0),|PF1|=m,|PF2|=n.在△PF1F2中,由余弦定理可知,4c2=m2+n2-2mncos60°.∵m+n=2a,∴m2+n2=(
设:椭圆方程为x²/a²+y/b²=1===c=√(a²+b²)向量PF1×向量PF2=|PF1|*|PF2|*sin∠F1PF2=2S△PF1F2=
这个题目吧,你知道椭圆上任意一点(x0,y0)处的切线方程为:xx0/a^2+yy0/b^2=1然后运用点到直线的距离公式算A到此切线的最短距离.只有这种办法看似合理了.再问:切线上的点只有切点是在椭
x^2/8+y^2/2=12x/8+2yy'/2=0y'=-x/(4y)设P坐标是(m,n),则切线的斜率k=y'=-m/4n故切线方程是y-n=-m/(4n)*(x-m)令X=0,得到y=n+m^2
1.由焦半径公式:F1P=a+exF2P=a-exF1F2=2c在△PF1F2中应用余弦定理cos60º=1/2=[(a-ex)²+(a+ex)²-4c²]/2
点差法的具体步骤:S1设弦的两端点坐标S2两式相减,S3中点代换和的式子,S4两边同除以(x1-x2)获取斜率公式S5点斜式求出方程:设A(x1,y1),B(x2,y2)x1²/4+y1
3x^2+4y^2=48,x^2/16+y^2/12=1a=4,b=2√3c=2.e=c/a=1/2根据椭圆第二定义,椭圆上的点到焦点距离与对应准线距离之比为离心率得2|PF|就是P到右准线x=a^2
(1)|PF1|•|PF2|≤(|PF1|+|PF2|2)2=a2=4,故:|PF1|•|PF2|的最大值是4;(2)|PF1|2+|PF2|2=(|PF1|+|PF2|)2−2|PF1|•|PF2|
LZ,最后一步错了S=(1/2)×│F1F2│×│y1│=(1/2)│PF1││PF2│=16│F1F2│=2C=10,前面还有个1/2.所以Y1应该是16/528922希望对你有帮助!