已知正数abc满足,2a-b+c等于0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 09:47:46
∵正数a,b,c满足a+b=ab,∴ab≥2ab,化为ab(ab−2)≥0,∴ab≥2,∴ab≥4,当且仅当a=b=2时取等号,∴ab∈[4,+∞).∵a+b+c=abc,∴ab+c=abc,∴c=a
由题知:b+d=x,c+d=y,x+y=b+c+2d,其它为:a+b=23a+c=26a+d=29b+c=93由上得:b=23-ac=26-ad=29-a则b+c=23-a+26-a=49-2a=93
a,b,c满足a+b+c=0,abc>0=>a、b、c两负一正设a
∵a^2+ab-ac-bc=0a(a+b)-c(a+b)=0(a+b)(a-c)=0∵(a+b)>0a-c=0∴a=c
因为2a+b=(2a+b)(1/a+2/b)=4+b/a+4a/b≥4+2√(b/a)(4a/b)=4+4=8,所以4a^2+b^2≥(2a+b)^2/2≥32..
∵正数a.b满足4a+b=30,∴1a+1b=130(4a+b)(1a+1b)=130(5+ba+4ab)≥130•(5+2ba•4ab)=0.3,当且仅当ba=4ab,即a=5,b=10时,1a+1
取特殊值.如设a=3,b=2,c=-1则原式=3/5如设a=-3,b=-2,c=-1则原式=1/5
2b+a≥2√(2ab)ab+2√(2ab)≤302√(2ab)≤30-ab(ab)²-68ab+900≥0ab≥50(舍去)或ab≤18(当且仅当2b=a时取等号)故有1/(ab)的最小值
(2a+b)/c再问:再问一个,过双曲线左焦点且垂直于X轴的直线与双曲线交与AB点若AB与右焦点所成三角形为钝角三角形则该双曲线的离心率取值范围是。谢谢!再答:1到(1+根号2)再问:答案是1+根号2
a^4b^5/ab^2=6/3a^3b^3=2a^7b^8=a^6b^6xab^2=(a^3b^3)^2xab^2=2^2x3=12手机提问的朋友在客户端右上角评价点【满意】即可.
令a=x(0
原表述有误.应为:已知三个正数a、b、c,满足abc=1.求a/(ab+a+1)+b/(bc+b+1)+c/(ac+c+1).a/(ab+a+1)+b/(bc+b+1)+c/(ac+c+1)=a/(a
小于0.因为A+B+C=0,所以A、B、C有正有负,又因为ABC=8,所以A、B、C必定2负一正.设A、B为负,C为正,则A+B=-C,则1/A+B=-1/C,则1/A+B+1/C=0,又因为A、B为
因为abc.都是正数,且abc成等比数列,所以有ac=b^2又左边-右边=a^2+b^2+c^2-(a–c+b)^2=-2ab+2ac+2bc=2(-ab+bc+ac)=2(bc+ab-b^2)=2b
a≤b+c≤2a,b≤a+c≤2b,所以a-
1算式-b2算式-a即可
(1)∵a,b>0,∴2=a+b≥2ab,解得0<ab≤1.∴ab的取值范围是(0,1];(2)由(1)可知:ab∈(0,1],令ab=t,则4t+1t≥24t•1t=4,当且仅当t=12时取等号,∴
两边取以10为底的对数:xlg2=z,1/x=lg2/z同理ylg5=z,1/y=lg5/z1/x+1/y=[lg2+lg5]/z=1/z都取以10为底的对数则a㏒3=2b㏒2=c㏒6㏒3=1/a㏒2