已知正数数列an的前n项和为sn,且对任意的正整数n满足2根号下sn等于an 1

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 00:19:53
已知数列{an}的各项均为正数,前n项和为Sn,且满足2Sn=an2+n-4(n∈N*).

(1)∵2Sn=an2+n-4(n∈N*).∴2Sn+1=an+12+n+1-4.两式相减得2Sn+1-2Sn=an+12+n+1-4-(an2+n-4),即2an+1=an+12-an2+1,则an

已知数列{an}的前n项和S

a1=S1=3+2=5,an=Sn-Sn-1=(3+2n)-(3+2n-1)=2n-1,当n=1时,2n-1=1≠a1,∴an=5,n=12n−1,n≥2.

已知数列{an}各项均为正数,其前N项和为sn,且满足4sn=(an+1)^2.求{an}的通项公式

4Sn=(an+1)^24Sn-1=(an-1+1)^2n-1为下标则4an=4Sn-4Sn-1=(an+1)^2-(an-1+1)^2化简得(an-1)^2=(an-1+1)^2则an-1=正负(a

已知数列{an}的各项为正数,前n项和为Sn,且Sn=a

证明:∵Sn=an(an+1)2∴S1=a1(1+a1)2∴a1=1…(1分)由2Sn=a2n+an2Sn-1=a2n-1+an-1⇒2an=2(Sn-Sn-1)=a2n-a2n-1+an-an-1…

求数列的通项公式已知正数数列{An}的前n项和为Sn,且An^2+3An=6Sn,求An

1楼貌似错了!(a1^2-3a1=6a1与An^2+3An=6Sn矛盾)An^2+3An=6SnA(n+1)^2+3A(n+1)=6S(n+1)后减前得A(n+1)^2+3A(n+1)-An^2-3A

已知正数数列{an}的前n项和为Sn,且对于任意正整数n满足2根号Sn=an+1 求an通项

2√Sn=an+1则有,4Sn=(an+1)²4a(n+1)=4[S(n+1)-Sn]=[a(n+1)+1]²-(an+1)²=[a(n+1)]²+2a(n+1

设数列{an}的各项都为正数,其前n项和为sn,已知对任意n,sn是an的平方和an的等差

(1)(an+2)/2=根号下2Sn所以8Sn=(an+2)^2n=1,S1=a1.8a1=(a1+2)^2,得a1=2n=2,8S2=(a2+2)^2,8(a1+a2)=(a2+2)^2,得a2=6

已知数列{An}的各项均为正数,前n项和为Sn,且满足2Sn=An²+n-4 1.求证{An}为等差数列

1.n=1时,2a1=2S1=a1²+1-4a1²-2a1-3=0(a1+1)(a1-3)=0a1=-1(数列各项均为正,舍去)或a1=3n≥2时,2an=2Sn-2S(n-1)=

已知正数数列{an}的前n项和为Sn,且对于任意的n∈N+,有Sn=1/4(an+1)²

1)n=1,解得a1=1n>1时S(n-1)=1/4(a(n-1)+1)^2Sn=1/4(an+1)^2相减并整理得到an^2-2an-a(n-1)^2-2a(n-1)=0(an-a(n-1)-2)(

各项均为正数的数列{an}的前n项和为S,且sn=1\8(an+2)².求证数列{an}是等差数列

sn=(1/8)(an+2)²S(n-1)=(1/8)[a(n-1)+2]²an=Sn-S(n-1)=(1/8){(an+2)²-[a(n-1)+2]²}=(1

已知数列AN的各项均为正数,且前N项和满足6Sn=an^2+3an+2,求数列通项公式

6Sn=an^2+3an+26S(n-1)=a(n-1)^2+3a(n-1)+26Sn-6S(n-1)=6an=an^2+3an+2-a(n-1)^2-3a(n-1)-26an=an^2+3an-a(

已知各项均为正数的数列{An}的前n项和Sn满足S1>1,且

1)6Sn=An^2+3An+2因为S1=A1所以6A1=A1^2+3A1+2A1^2-3A1+2=0(A1-1)(A1-2)=0因为A1=S1>1所以A1=2因为An=Sn-S(n-1)注S(n-1

已知数列中各项均为正数,sn是数列an 中的前N项和,且Sn=1/2.求数列an的通项公式

当n=1时,S1=a1=1/2(a1^2+a1),解得a1=1当n>1时,an=Sn-S(n-1)=1/2(an^2+an)-1/2[a(n-1)^2+a(n-1)],整理得[an+a(n-1)][a

已知数列{an}的各项均为正数,前n项的和Sn=(an+1)24

(1)a1=(a1+1)24,解得a1=1,当n≥2时,由an=Sn-Sn-1=(an+1)2−(an−1+1)24,得(an-an-1-2)(an+an-1)=0,又an>0,所以an-an-1=2

已知数列{an}的各项均为正数,Sn是数列{an}的前n项和,且4Sn=an2+2an-3.

(1)当n=1时,a1=s1=14a21+12a1−34,解出a1=3,又4Sn=an2+2an-3①当n≥2时4sn-1=an-12+2an-1-3②①-②4an=an2-an-12+2(an-an

已知数列{an}的前n项和为Sn

解题思路:方法:数列通项的求法:已知sn,求an。求和:错位相减法。解题过程:

已知数列{an}的前n项和为Sn,且S

由Sn=13(an−1)可知Sn−1=13(an−1−1),两式相减可得,an=13(an−an−1),即anan−1=−12,(n≥2)故数列数列{an}为等比数列.公比q=−12. 又a

已知各项均为正数的数列{an}的前n项和为sn,且sn,an,1成等差数列,求数列{an}的通项公式

Sn、an、1成等差,则2an=Sn+1(n=1时,得a1=1),当n≥2时,有2a(n-1)=S(n-1)+1,则2an-2a(n-1)=an,即an/[a(n-1)]=2=常数,所以{an}是等比

已知各项均为正数的数列{an}前n项和为Sn,首相为a1,且½,an,Sn是等差数列,求通项{an}公式

由题意知2an=Sn+1/2,an>0,当n=1时,2a1=a1+1/2,解得a1=1/2,当n≥2时,Sn=2an-1/2,S(n-1)=2a(n-1)-1/2,两式相减得an=Sn-S(n-1)=