已知点P是平面四边形ABCD所在平面外一点,如果向量AB=(2,-1,4)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 09:37:04
已知点P是矩形ABCD外一点,PA⊥面ABCD,且PB,PD与平面ABCD所成角分别为45°,30°,PA=α,求点P到

2分之(根号7)α    PA⊥面ABCD,且PB,PD与平面ABCD所成角分别为45°,30°,PA=α,  可以知道AD=(根3)α.&

如图,已知四边形ABCD是平行四边形,点P是平面ABCD外的一点,则在四棱锥P-ABCD中,M是PC的中点,在DM上取一

证明:连接AC,交BD于O,连接MO.因为四边形ABCD是平行四边形,所以O是AC的中点,又因为M是PC的中点,所以MO∥PA.又因为MO⊂平面BDM,PA⊄平面BDM,所以,PA∥平面BDM.又因为

已知ABCD为正方形,点P是ABCD所在平面外的一点,P在平面ABCD上的射影恰好是正方形的

已知ABCD为正方形,点P是ABCD所在平面外的一点,P在平面ABCD上的射影恰好是正方形的中心,则四棱锥P-ABCD为正四棱锥

已知:如图四边形ABCD是平行四边形,P、Q是直线AC上的点,且AP=CQ.

证明:连接BD交AC与O点(1分)∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,(2分)又∵AP=CQ,∴AP+AO=CQ+CO,即PO=QO,(2分)∴四边形PBQD是平行四边形.(2分)

已知点P是平面四边形ABCD所在平面外一点,且AB=CD,AD=CD,PA=PC,求证平面PAC垂直平面PBD

由AB=CD,AD=CD,得四边形ABCD为正方形由PA=PC,得三角形PAC为等腰三角形PBD也为等腰三角形设PAC得垂点为MPM垂直于BD因为AC垂直BD(ABCD是正方形)则pmc垂直于ABCD

已知空间四边形ABCD,P、Q分别是△ABC和△BCD的重心.求证PQ‖平面ACD.

首先啊要知道重心是三角形中线的交点,并且分得的两线段比是2:1那连接BP并延长交AC于点M连接BQ并延长交AC于点N可得BP:PM=BQ:QN=2:1所以PQ平行于MN同时MN包含于平面ACD,PQ不

已知平面内的四边形ABCD和该平面内任一点P满足AP"+CP"=BP"+DP"那四边形ABCD一定是

思路:先取特殊点推出四边形为矩形,再验证对于矩形,该平面内任一点P满足AP^2+CP^2=BP^2+DP^2不妨取P为AB的中点,则由AP^2+CP^2=BP^2+DP^2可得PC=PD,设CD的中点

已知:在空间四边形ABCD中,点P,Q分别是△ABC和△BCD的重心.求证:PQ∥平面ACD

设E为BC中点Q是△ABC重心所以AQ:QE=3:2P是△BCD的重心所以DP:PE=3:2即AQ:QE=DP:PE则PQ//AD又因为AD在平面ACD内所以有PQ‖平面ACD

已知空间四边形ABCD,p、Q分别是三角形ABC和三角形ACD的重心.求证pQ//平面BCD

不知有没有回答迟了,因为p、Q分别是三角形ABC和三角形ACD的重心,所以分别连接BP,CQ,由重心定义可知BP,CQ的沿长线与AC交于一点(假设为E)在△DBC中PQ为中位线.所以知PQ//BC,所

已知点P是平面四边形ABCD所在平面外一点,且AB=BC,AD=CD,PA=PC,证明面PAC垂直面PBD

连结AC,取中点记为E,由于AB=BC,AD=CD,立即由等腰三角形的性质可得:BE垂直于AC,DE也垂直于AC,这样B、D、E三点共线并且是AC的垂线.同理,PE也垂直于AC,从而,AC垂直于面PB

空间四边形ABCD中,E,F,G,H是各边上的点,已知BD//平面EFGH,且AC//平面EFGH,求证:四边形EFGH

因为BD//EFGH,BD含于平面ABD,EH含于ABD,所以BD平行于EH,同理BD//GF,所以EH//GF,同理可证HG//EF,所以EFGH为平行四边形

已知平面内的四边形ABCD和点O,且向量OA+OC=向量OB+OD,求证四边形ABCD是平行四边形

OA-OB=OD-OC即BA=CD从而BA//CD且BA的模=CD的模即ABCD是平行四边形

已知四棱锥P-ABCD的底面ABCD是菱形,PA垂直平面ABCD,点F为PC的中点.求PA平行平面B

应该是“求证:PA‖平面BFD”吧!证明:连结BD,AC交于点O,连结FO∵PA⊥BDPA‖FO(中位线)∴FO⊥BD∴平面BFD⊥平面ABCD∵PA⊥平面ABCDPA不在平面BFD上∴PA⊥平面BF

已知四边形ABCD为矩形,PA⊥四边形ABCD,PA=AB=根号2,点E是PB的中点,求证AE⊥平面PBC

∵ABCD是矩形,∴BC⊥AB.∵PA⊥平面ABCD,∴BC⊥PA.由BC⊥AB、BC⊥PA、PA∩AB=A,得:BC⊥平面PAB,而AE在平面PAB上,∴AE⊥BC.∵PA=AB、E∈PB且PE=B

已知点P是四边形ABCD所在平面外一点,且P到这个四边形各边的距离相等,那么这个四边形一定是(  )

如图因为PB=PE=PF=PA,所以OA=OB=OE=OF,即O到各边距离相等,所以四边形为圆外切四边形故选 C

已知空间四边形ABCD中,点E,F分别是AB,AD的重点,求证:EF//平面BCD

首先完成作图,连接EF∵在△ABD中,E、F分别为两边的中点∴AE:AB=AF:AD∴△ABD相似于△AEF∴EF//BD∵BD是平面BCD中的一条直线∴EF//平面BCD啊哈

空间四边形ABCD中,P、Q、R分别是AB,AD,CD的中点,平面PQR交BC于点S,求证:四边形PQRS为平行四边形

如图,P,Q,R分别是三棱椎A-BCD的棱AC,BC,BD的中点,过三点P,Q,R的平面交AD于S.求证:四边形PQRS是平行四边形.考点:直线与平面平行的判定,分析法和综合法,直线与平面平行的性质专

四边形ABCD为正方形,PA⊥平面AC,已知PA=4,AB=3√2,求点P到BD的距离

以这个图替代一下吧连接BD,AC,设交点为O,连接POPA⊥平面AC,∴ BD⊥PA∵ ABCD是正方形,∴ BD⊥AC∴ BD⊥平面PAO∴ PO⊥

已知点P是边长为8的正方形ABCD所在 平面外的一点,

取Q∈AB使AQ=3QB则QM=6QN=2∠MQN=∠PBC=60º对⊿MQN用余弦定理MN=2√7再问:请问:如何得出QM=6,QN=2?再答:相似三角形对应边成比例。