已知甲.乙两个数的比为2:3,并且他们的最大公因数

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 23:51:35
1、已知两个多边形的边数之比为1:2,两个多边形的内角和为1440°,求这两个多边形的边数.

1、设:一个为x,另一个为2x.根据题意得:(x-2)*180+(2x-2)*180=1440解得x=4,所以2x=82、因为内角不大于180,所以它应是2160,相减即可得100.3、因为AB+AE

已知两个多边形的内角和为900度,且多边形的边数之比为1比2,求这两个多边形的边数

设一个多边形X边,则另一个为2X边.(X-2)*180+(2X-2)*180=9003X-4=5X=32X=6(边)答:一个多边形3边,则另一个为6边.

已知甲数的2倍比乙数大30,乙数的3倍比甲数的4倍少20,则甲、乙两数分别为______.

设甲数为x,乙数为y,由题意,得2x−y=304x−3y=20,解得:x=35y=40.故答案为:35,40.

已知甲数比乙数的4倍少3,若设甲数为x,则乙数为---------

甲为x乙为【x+3】÷4再问:(^_^)不错嘛真快再答:还行

已知甲乙丙三数 甲数与乙数之比为1:3,乙与丙比为2:5,若甲与丙之和比乙数的4/3多27,求三个数

设甲x,则乙为3x,丙为7.5x得到x+7.5*x=(4/3)*(3*x)+27即8.5x=4x+27x=6即甲6乙18丙45

甲,乙两个数已知甲数比乙数的2倍多95乙数比甲数小1455甲,乙两数各是多少解释意思

解题思路:因为甲数比乙数的2倍多95,可以表示为:甲数=乙数+乙数+95所以甲数减去乙数的差可以表示为:乙数+乙数+95-乙数=乙数+95=1455由此可分别计算出,乙数是:1455-95=1360甲

甲乙丙三个数的和是94,已知甲乙两个数的比是3:2,乙丙两个数的比是7:6,求甲乙丙三个数各是多少

1、甲:乙=3:2=21:14乙:丙=7:6=14:12甲:乙:丙=21:14:1221+14+12=47甲=94÷47×21=42乙=94÷47×14=28丙=94÷47×12=242、梨=24÷(

七下数学评价手册答案P14页第四题:已知两个多边形的边数比为1;2,内角和度数比为1;3,求这两个多边形的边数

设一个多边形边数为X.另一个为2X.3*180(X-2)=180(2X-2)540X-1080=360X-360180X=720X=42X=8答:一个为4.一个为8

三角形的内角和1.已知两多边形的边数之比为1:2,内角和的大小之比为1:3,求这两个多边形的边数2.已知多边形的一个内角

设两个多边形边数为n2n.n边行内角和为(n-2)*180,所以(n-2)/(2n-2)=1/3,n=4.设边数为n外角度数为a,600=a+[(n-2)*180-(180-a)],a+(n-3)*1

已知两个多边形的边数之比为1:2,内角和的度数之比为1:3,试求这两个多边形的边数.

一个边数X另一个2X(X-2)*180*3=(2X-2)*1803X-6=2X-2X=4即4边形和8边形

已知两个多边形的边数之比为1:2,内角和的大小之比为1:3,求这两个多边形的边数。

解题思路:设多边形的边数为n,则另一个为2n,分别表示出两个多边形的内角和得到有关n的方程求解即可解题过程:解:∵两个多边形的边数之比为1:2,∴设多边形的边数为n,则另一个为2n,∵内角和度数之比为

已知一个数是-2,另一个数比-2的相反数小3,则这两个数和的绝对值为______.

∵-2的相反数是2,∴比-2的相反数小3是2-3=-1,∴这两个数的和的绝对值为|-2+(-1)|=|-3|=3.故答案为3.

1.已知两个多边形的边数之比为1:2,内角和的大小之比为1:3 ,求这两个多边形的边数.

1、设最小得边数为x(x-2)*180*3=(2x-2)*180x=4所以为四边形和八边形2、分析:根据多边形的边数,可表示这个多边形的内角和,由于内角和中的一个内角换成了这个内角的外角,故可设一辅助

已知两个多边形的边数之比为1:2,内角和的度数之比为1:3,试求这两个多边形的边数.

设多边形边数分别为X和2X,则内角和度数分别为180*(X-2)180*(2X-2)则180*(X-2):180*(2X-2)=1:3解得X=4

已知两个多边性的边数之比为1:2,内角和大小之比为1:3,求这两个多边性的边数

设两个多边形边数x,2xx条,内角和=(x-2)*1802x条,内角和=(2x-2)*180所以(x-2)*180/(x-2)*180=1/3(x-2)/(2x-2)=1/33(x-2)=2x-23x