已知矩形ABCD,点E是AB的中点,连结ED,过点D作

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 04:10:43
已知,如图,在矩形ABCD中,E,F分别是边BC,AB上的点,且EF=ED,EF⊥ED,

由EF=ED,EF⊥ED,得∠BEF+∠CED=90°,因∠CDE+∠CED=90°,所以∠BEF=∠CDE,所以△BFE≌△ECD,所以BE=CD=4,BF=CE=3,AF=1BE=AB,∠BAE=

已知E.F分别是矩形ABCD边AB和CD的中点,若矩形ABCD与矩形EADF相似,AD=1,求矩形ABCD的面积

 设AB=CD=2X,则AE=X 因为矩形ABCD与矩形EADF相似 所以AB/AD=AD/AE 因为AD=1 所以2X^2=1 所以X=√

如图,已知四边形ABCD为平行四边形,点E在AB的延长线上,CE∥BD,且CE=CA,求证:四边形ABCD是矩形

因为E在AB的延长线上,所以DC//BE因为CE//BD,所以EBDC是平行四边形,所以DC=BE因为ABCD是平行四边形,所以DC=AB,所以AB=BE因为AC=CE,所以角ABC是90度,所以AB

如图,已知在矩形ABCD中,AB=1,BC=4,点E是BC的中点,连接AE……

由第一问可知△ABE∽△DCG,得到AB/BE=CG/CD,得到CG=1/2,那么EG=3/2,同理可以得到△EFG∽△DCG,得到EG/FG=DG/CG,在直角三角形CDG中,CD=1,CG=1/2

初三数学.好的加分.如图,已知在矩形ABCD中,AB=1,BC=4,点E是BC的中点,连接AE……

(1)∵矩形ABCD∴∠B=∠C=90°∵AF⊥DF∴∠GEF+∠EGF=90°∵∠DGC=∠EGF,∠AEB=∠GEF【也可用∠1∠2表示】∴∠DGC+∠AEB=90°∵∠BAE+∠AEB=90°∴

点e,f,分别是矩形abcd边ad和bc上的点,且四边形abfe是正方形,矩形efdc与矩形abcd相似,求ad:ab

这不是黄金比例吗...AD:AB=AD:AEAD:AB=EF:DE=AE:DE就是AD:AE=AE:DE咯,这不就是黄金比例的那个表达式嘛..黄金比例是(√5-1)/2,这是AE:AD的结果你要求AD

已知矩形ABCD中,E,F,K分别是AB,CD,BC的中点,AK与EF交于点G

正方形.懒得画图了,自己画.思路:做辅助线AC、BD,设AK⊥BF于H.先证明三角形KAB与三角形BFE相似,再证明三角形FBD与KAC全等,推出DF=KC,即DC=BC

如图,已知四边形ABCD是矩形,对角线AC,BD相交于点O,CE∥DB,交AB的延长线于E.求证:AC=CE.

图错了,要不就是题输错了按照文字叙述来说,分别证两个平行四边形,根据对边相等CE=BD=AC

如图,已知四边形ABCD是矩形,对角线AC,BD交于点O,CE‖DB,交AB的延长线于点E,求证:AC=CE

证明:∵四边形ABCD是矩形,∴AC=BD,AB∥CD,∵CE∥DB∴四边形BECD为平行四边形,∴BD=CE∴AC=CE如果本题有什么不明白可以追问,如果满意记得采纳如果有其他问题请另发或点击向我求

(2012•宝安区二模)如图1,已知矩形ABCD中,AB=43BC,O是矩形ABCD的中心,过点O作OE⊥AB于E,作O

(1)∵O是矩形ABCD的中心,OE⊥AB于E,OF⊥BC于F,∴AE=12AB,CF=12BC,∵AB=43BC,∴12AB=12×43BC,即AE=43CF;∵AB⊥BC,点E、F分别是AB、BC

如图,E,F分别是矩形ABCD一组对边AD,CB的中点,已知矩形AEFB∽矩形ABCD.求AB比BC的值.

因为E,F分别是矩形ABCD一组对边AD,CB的中点所以BF=1/2BC因为矩形AEFB∽矩形ABCD所以AB:BC=BF:AB即AB×AB=BC×BF设BC=2,则BF=1/2BC=1AB×AB=2

已知在平行四边形ABCD中,点E,F分别是AB,CD的中点,且AF=DE,求证:平行四边形ABCD是矩形.

证明:连接EF,∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵点E,F分别是AB,CD的中点,∴AE=12AB,DF=12CD,∴AE=DF,AE∥DF,∴四边形AEFD是平行四边形,∵A

已知:如图,在平行四边形ABCD中,E是AB的中点,ED=EC,求证:四边形ABCD是矩形

ABCD是平行四边形,所以AD=BC.E是AB的中点,所以AE=BE,ED=EC所以三角形ADE全等于三角形BCE,所以角EAD=角EBC.因为AD//BC,所以角DAE+角EBC=180所以角EAD

已知:如图所示,四边形ABCD是矩形,对角线AC,BD相交于点O,CE∥DB,交AB的延长线于点E,AC与CE相等吗?

答:AC与CE相等.(详细证明如下:)∵四边形ABCD是矩形∴对于直角△DAB和直角△CBE来说,AD=BC,又∵CE∥DB∴∠DBA=∠CEB(平行的同位角相等)因此,△DAB≌△CBE那么,CE=

已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED.

证明:∵四边形ABCD是矩形,∴∠B=∠C=∠BAD=90°,AB=CD,∴∠BEF+∠BFE=90°.∵EF⊥ED,∴∠BEF+∠CED=90°.∴∠BFE=∠CED.∴∠BEF=∠EDC.在△EB

已知四边形ABCD为矩形,PA⊥四边形ABCD,PA=AB=根号2,点E是PB的中点,求证AE⊥平面PBC

∵ABCD是矩形,∴BC⊥AB.∵PA⊥平面ABCD,∴BC⊥PA.由BC⊥AB、BC⊥PA、PA∩AB=A,得:BC⊥平面PAB,而AE在平面PAB上,∴AE⊥BC.∵PA=AB、E∈PB且PE=B

如图,E,F分别是矩形ABCD一组对边AD,CB的中点,已知矩形ABCD∽矩形AEFB,求AB比BC的值

根据题意,可知AE=FB=AD/2=BC/2∵AEFB∽ABCD∴AE/AB=AB/BCAB^2=AE·BC=(BC/2)·BC=BC^2/2(AB/BC)^2=1/2AB/BC=√2/2答:AB:B

E,F分别是矩形ABCD一组对边AD,CB的中点,已知矩形AEFB∽矩形ABCD.求AB:BC的值

因为矩形AEFB∽矩形ABCD,所以对应边成比例.即:AB:BC=BF:AB=(BC/2):AB所以:AB:BC=(BC/2):AB得出AB^2=(BC^2)/2两边开根号:AB:BC=(根号2)/2

已知ABCD是矩形E,F分别是AB、BC的中点,设G在PA上,且EG‖平面PFD,试确定点G的位置

原题是这个吧已知四棱锥底面ABCD是矩形,PA⊥平面ABCD,AD=2,AB=1,E.F分别是线段AB.BC的中点,在PA上找一点G,使得EG∥平面PFD.过点E作EH∥FD交AD于点H,则EH∥平面