已知角AOB=60度,点P到射线OAOB的距离分别为2根号3和根号3
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 04:46:43
证明:过点P作PE⊥OA于E,PF⊥OB于F∵点P是∠OAB角平分线上的点,∴PE=PF在Rt△PEC和Rt△PFD中∵∠CPE=∠DPF=90°-∠EPDPE=PF∴Rt△PEC≌Rt△PFD∴PC
先作出∠AOB的平分线(这个比较简单)再答:设平分线为OC,则根据角平分线的性质,OC上任意一点到OA和OB的距离相等然后以M为圆心,a为半径画圆,此圆与OC的交点P即为所求,目测这样的P有两个。再答
从P分别向OA,OB作垂线.如果O在角平分线上,那麽根据"角的平分线上的点到角的两边的距离相等",则P到OA和OB的距离相等.(两段垂线相等)
1、作出∠AOB的平分线OC,2、连接MN,作线段MN的垂直平分线EF,交OC于点P则点P就是所要求作的点.
到M,N点相等.所以一定在MN线段的垂直平分线上:连结MN.用尺规画出垂直平分线.其次要在角AOB平分线上.所以尺规画出角AOB的角平分线.跟MN的垂直平分线焦点即为所求点P.
作图法找P点P点为角AOB的角平分线和C,D两点的垂直平分线的交点
PC一定是两倍的CE的.证明:过点C坐一条辅助线CF垂直于OA,垂足为F.∵OM为角平分线,∴∠AOM=∠BOM,又∵CF⊥OA,CE⊥OB,∴∠OCF=∠OCE.又∵OC=0C,∴三角形OCF≌三角
1.P到OA、OB的距离相等,那么做角AOB的角平分线,线上任何一点到OA、OA的距离相等.2.连接M、N,作MN的中垂线,线上任何一点到M、N的距离相等.3.角平分线与中垂线的交叉点即为P点
如图所示:作法:(1)以O为圆心,任意长为半径画弧,与OA、OB分别交于两点;(2)分别以这两交点为圆心,大于两交点距离的一半长为半径,在角内部画弧,两弧交于一点;(3)以O为端点,过角内部的交点画一
先做角AOB的角平分线在做CD的垂直平分线这两条线会有一个交点就是那个交点再答:那个交点就是点P
D等边三角形OP=OP.=OP'角P'OP=角POP.所以角P'OP.=2角AOB=60以上条件得出是等边
作角A0B的角平分线:以O为圆心做弧交OA、OB于C、D,再分别以C、D为圆心作弧相交于E点,连接OE,OE与MN的交点即为P点
过P作PE//OB,又PC//OA,OC=4,所以PE=4,PE//OC.因为∠AOB=60°,点P为∠AOB的角平分线上一点,所以∠AOP=∠BOP=∠EPO=30°,又PD⊥OA,所以∠DPE=3
在oa上,随便找一点d,连接pd,做pe垂直oa,用直尺量出pe的长度,再用直尺向oa的另一方【垂直】作出Ep,点F即是点P关于直线OA的对衬点.接下去:【同样方法】(1)答:角POP'大于角a.(没
1)作PE⊥OA于E,PF⊥OB于F,∵OM是∠AOB的平分线∴PE=PF∵∠AOB=90°∴PEOF是正方形∵PC⊥PD∴∠EPC+∠CPF=∠CPF+∠FPD∴∠EPC=∠FPD∴Rt△PEC≌R
过P作PM⊥OA,PN⊥OB.则四边形PMON中,∠MPN=360-90-90-120=60度∵∠DPE=60度∴∠MPD=∠NPE∵OC是∠AOB的平分线,PM⊥OA,PN⊥OB∴PM=PN在△PM
(1)所作图形如下所示:(2)作CD的中垂线和∠AOB的平分线,两线的交点即为所作的点P.所作图形如下所示:
AB²=AP²+BP²-2AP×BP×cos120°=37sinAOB=AB/2ROP=2R=2√37/√3再问:为什么OP=2R再答:因为O、A、P、B四点共圆角A=9