已知随机变量求期望方差
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 18:32:54
X在(0,4)均匀分布.期望为2.
用统计量(X-μ)/√(S/n)
Dξ=(x1-Eξ)^2·p1+(x2-Eξ)^2·p2+……+(xn-Eξ)^2·pn=(x1)^2·p1-2x1p1Eξ+(Eξ)^2+…………+(xn)^2·pn-2xnpnEξ+(Eξ)^2p
老兄,解答在图片上,给你回答还真费劲啊
15E(X+Y+Z)=E(X)+E(Y)+E(Z)=1D(X+Y+Z)=D(X)+D(Y)+D(Z)+2[根号(D(X)D(Y))pxy+根号(D(X)D(Z))pxz+根号(D(Y)D(Z))pyz
X--B(n,p)==>p(x)=C(n,x)p^x(1-p)^(n-x)Y=e^(mx)==>E(Y)=所有的y求和y*p(y)=所有的x求和e^(mx)*p(x)=所有的x求和e^(mx)*[C(
X--B(n,p)P(x)=C(n,x)p^x(1-p)^(n-x)Y=e^(mx)E(Y)=所有的y求和Σy*P(y)=所有的x求和Σe^(mx)*P(x)=所有的x求和Σe^(mx)*[C(n,x
可利用期望与方差的公式如图计算.经济数学团队帮你解答,请及时采纳.
EY=0DY=1EY=E(x-u)/&=(EX-U)/&=0DY=D[(X-U)^2]/(&^2)而D[(X-U)^2]=E[(X-U)^2]-[E(X-U)]^2=E[(X-U)^2](后面项为0)
g(x,y)代表任何一个以x,y为自变量的二元函数,但是并不排除x^2啊,g(x,y)=x^2+0*y^2,这完全可以啊.其实g(x,y)可以是任何一个表达式,哪怕是x+y+z呢,没有任何关系.只需要
不一定吧--设想全部自然数上的均匀分布.
如图 详细步骤
P1+P2+P3=1E&=1*P1+2*P2+3*P3=2D&=1*P1*(1-P1)+2*P2*(1-P2)+3*P3*(1-P3)=0.5以上方程求的p1=0.25p2=0.5p3=0.25P(-
再答:直接背公式
期望EX=10*0.5+9*0.3+8*0.1+7*0.05+6*0.05=5+2.7+0.8+0.35+0.3=9.15(变量x的取值乘以各自取值的概率之和)方差DX.在计算方差之前先求平均值y=(
若期望u已知,利用(Xi-u)/&(方差)是标准正太的性质,那么它的平方属于塌方分布,在显著性水平条件下.即可找出其拒绝域!
P{X=-2}=F(-2)-F(-2-0)=0.1-0=0.1;P{X=0}=F(0)-F(0-0)=0.4-0.1=0.3;P{X=1}=F(1)-F(1-0)=0.8-0.4=0.4;P{X=3}
想想二项分布泊松分布和0-1分布的关系就求出来了几何分布就是求级数的和函数自己算算呗查看原帖