常数项级数∑n 2^(n-1)=

来源:学生作业帮助网 编辑:作业帮 时间:2024/10/02 23:31:23
请问如何证明lim(n→∞)[n/(n2+n)+n/(n2+2n)+…+n/(n2+nn)]=1,

Limit[1/√(n^2+1)+1/√(n^2+2)+…+1/√(n^2+n),n→∞]≥Limit[1/√(n^2+n)+1/√(n^2+n)+…+1/√(n^2+n),n→∞]≥Limit[n/

判断级数+∞∑n=1 1/根号下n(n2+1)的敛散性

1/n^p级别的正项级数只要p严格大于1就是收敛,只要p等于1或者小于1就发散——这个结论不是一般都是可以直接用的吗?.1/根号(n(n^2+1))【因为n(n^2+1)=n^3+n>n^3所以1/(

证明级数∑n=1 (n/n+1)^(n^2)收敛性

(n/n+1)^(n^2)=[(1-(1/(n+1)))^(n+1)]^(n^2/(n+1))(1/e)^(n-1)是收敛的.

判定级数 (∞)∑(n=1)(-1)^n{[In(n+1)]/(n+1)}的收敛性

只找以充分大的N,使n>N时,一般项单调就行.也就是说x≥3是一个充分条件,对判断级数收敛够用就行.你取x≥2也是可以的,没问题.你心情不好取x≥10000000000,都能得到正确的判定结果.

直线l:y=(m-3)x+n(m,n为常数)如图所示,化简|m-n|-n2−4n+4-|m-1|.

如图,y=(m-3)x+n(m,n为常数)的图象经过第一、三象限,∴m-3>0,解得,m>3.又∵直线与y轴交于正半轴,∴2>n>1,∴m>n,∴|m-n|-n2−4n+4-|m-1|=m-n-|n-

级数∑(n+1)^2/n!=s=

s=∑(n+1)^2/n!=∑(n²+2n+1)/n!=∑n²/n!+2∑n/n!+∑1/n!=∑n/(n-1)!+2∑1/(n-1)!+∑1/n!=∑(n-1+1)/(n-1)!

判别级数∑(n=1,∝) sin^n/n*根号下n的敛散性,

考虑其正项级数,对其分子进行放缩,利用比较判别法可知原级数收敛,具体解题步骤如下

微积分 判断级数∑(n=1,∞)n^n/3^n*n!的收敛性

达伦贝尔判别法,结果是e/3再问:可以给我写一下详细的步骤吗?实在是辛苦了,我不太懂。如果能用图画写出来,发图就实在是太太感谢了再答:

-1的n-1次方乘以[(2的n^2)/(n!)]常数项级数的收敛性怎么做?

由stirling公式n!根号(2πn)*n^n*e^(-n){[(2的n^2)/(n!)]}^(1/n)=(2^n*e)/[n*(2πn)^(1/(2n))]→无穷(当n→无穷)所以由cauchy判

判断级数 ∑ (∝ n=1) 3^n*n!/n^n的敛散性

比值法,U(n+1)/Un=3/[(1+1/n)^n]→3/e>1(n→∞),所以级数发散

判定级数∑(n-1,正无穷)1/(√3n2+2n)的敛散性

级数发散.lim(n→∞)1/√(3n^2+2n)/1/n=lim(n→∞)n/√(3n^2+2n)=lim(n→∞)1/√(3+2/n)=1/√3.∑1/n发散,所以级数∑1/√(3n^2+2n)发

判断级数的敛散性 数项级数∑[0,∞](-1)^n(1-cosa/n)(其中a为常数)

绝对收敛,用比较审敛法的极限形式,和定理任意项级数通项加绝对值后收敛,级数本身收敛,也就是绝对收敛.∑[0,∞](-1)^n(1-cosa/n)通项加绝对值后∑[0,∞](1-cosa/n)构造级数∑

判断级数敛散性∑(n=1到∞)(n+1/n)/(n+1/n)^n

(n+1/n)/(n+1/n)^n开n次根号(柯西判别法),结果为0,小于1,收敛.且(n+1/n)/(n+1/n)^n恒正,故绝对收敛再问:答案给的是发散,莫非答案错了?

已知抛物线y=x2+(2n-1)x+n2-1(n为常数).

(1)由已知条件,得n2-1=0解这个方程,得n1=1,n2=-1当n=1时,得y=x2+x,此抛物线的顶点不在第四象限.当n=-1时,得y=x2-3x,此抛物线的顶点在第四象限.∴所求的函数关系为y

级数通项:(e^n)*(n!)/(n^n).其中e是自然常数.判断其收敛性

我回答过一次了由于当n为任意正整数时,(1+1/n)^na(n)S(n)=a(1)+a(2)+……+a(n)>n*a(1)=n*en*e在n趋向无穷大时无穷大,所以S趋向无穷大,即发散请问你的通项是e

一道级数的证明题求证级数1/n2^n=ln2(等式前有一个求和符号,并从1到无穷)

为了求出级数的级数和,我们从幂级数S(x)=∑x^n/n(n从1到+∞,|x|<1)着手进行计算,显然S(1/2)=∑1/n2^n.对S(x)进行求导运算得S'(x)=∑x^n(n从0到+∞,|x|<