a1=1,an 1=3an 1 证明1 a1 1 a2 ... 1 an

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 21:23:34
用数学归纳法证明:(a1+a2+…+an)^2=a1^2+a2^2+…a3^3+2(a1a2+^

(1).当n=1时,左边=a1^2,右边=a1^2,命题成立.(2).假设当n=k时命题成立,即:(a1+a2+…+ak)^2=a1^2+a2^2+…ak^2+2[a1a2+a1a3+…a(k-1)a

设3阶方阵A属于特征值-1和1的特征向量是a1 a2 向量a3满足Aa1=a2+a3 证明a1 a2 a3

答案见补充图片再问:怎么看补充图片啊再答:在上传中,百度抽风,要等一会

数列{an}中,a1=-2,an+1=1+an1−an,则a2010=(  )

由于a1=-2,an+1=1−an1+an∴a2=1+a11−a1=−13,a3=1+a21−a2=12,a4=1+a31−a3=3,a5=1+a41−a4=−2=a1∴数列{an}以4为周期的数列∴

证明线性相关β1=a1+a2 β2=3a2-a1 β3=2a1-a2 证明β1β2β3线性相关

4β3+3β2-5β1=0所以β1β2β3线性相关再问:4β3+3β2-5β1=0中的系数4,3,-5怎样配再答:4(2a1-a2)+3(3a2-a1)-5(a1+a2)=0

线性代数 基础解系设n阶方阵A=[aij]的秩为n,以A的前r(rη n(是n不是r,上面打错了)=[An1,An2,…

A可逆,故由AA*=det(A)E知A*可逆,因此题目给出的的n-r个向量是A*的后n-r列,是线性无关的,只要证明他们是第一个方程组的解即可.由AA*=det(A)E知,A的第i(i=1,2..,r

设正理数a1是根号3的一个近似值,令a2=1+[2/(1+a1)],证明根号3介于a1与a2之间

a1变大时a2变小假设a1=根号3则a2=根号3a1大于根号3a2小于根号3a1小于根号3a2就大于根号3所以根号3介于a1与a2之间

S3=S8 怎么证明出3a1+3d=8a1+28d

S3=a1+a2+a3=a1+a1+d+a1+2d=3a1+3dS8=a1+a2+a3+...+a8=a1+a1+d+a1+2d+...+a1+7d=8a1+(d+2d+...+7d)=8a1+28d

数学归纳法证明(a1+a2+.+an)^2=a1^2+a2^2+.+an^2+2(a1a2+a1a3+.+a(n-1)*

当n=2时,(a1+a2)^2=a1^2+a2^2+2a1a2,等式成立设n=k时,则(a1+a2+.+ak)^2=a1^2+a2^2+.+ak^2+2(a1a2+a1a3+.+a(k-1)*ak).

不等式证明(a1+a2+.+an)/n>=(a1*a2*.*an)^(1/n) 该如何证?它是哪个不等式的推广?

数学归纳法(一般竞赛书上会给证明)a+b>=2(ab)^0.5的推广

已知R(A1,A2,A3)=2,R(A2,A3,A4)=3 证明:A1能由A2,A3线性表示;A4不能由A1,A2,A3

R(A1,A2,A3)=2说明这个向量组不是满秩则线性相关则存在不全为0的数k1,k2,k3k1A1+k2A2+k3A3=0.(1)若k1=0则k2A2+k3A3=0说明k2,k3线性相关而这与R(A

已知向量组a1,a2,a3,a4,A=(a1,a2,a3),B=(a2,a3,a4,R(A)=2,R(B)=3,证明a1

(B)=3,则a2,a3,a4线性无关则a2,a3无关r(A)=2则a1,a2,a3线性相关所以a1可以有a2,a3线性表示或者根据a1,a2,a3线性相关则存在不全为0的常数k1,k2,k3使得k1

若a1>0,a1≠1,an+1=2an1+an(n=1,2,…)

(1)证明:若an+1=an,即2an1+an=an,解得an=0或1.从而an=an-1=…a2=a1=0或1,与题设a1>0,a1≠1相矛盾,故an+1≠an成立.(2)由a1=12,得到a2=2

已知数列{log2 (an-1)}为等差数列,且a1=3 a3=9 (1)求an (2)证明1/(a2-a1)+1/(a

已知数列{bn}={log2(an-1)}为等差数列,且a1=3a3=9→b1=log2(3-1)=log2(2)=1,b2=log2(9-1)=log2(8)=3,公差d=3-1=2,∴bn=1+(

已知R(a1,a2,a3)=2,R(a2,a3,a4)=3,证明 (1)a1能由a2,a3线性表示 (2)a4不能由a1

一个向量无关组M个向量中抽出来n个在组成一个向量组,他们还是线性无关的,因为如果他们线性相关,那么,存在不全为零的ki,使得k1a1+k2a2+...knan=0,则存在不全为零的ki使得k1a1+k

证明恒等式a1/a2(a1+a2)+a2/a3(a2+a3)+……+an/a1(an+a1)=a2/a1(a1+a2)+

利用:a1/[a2(a1+a2)]=1/a2-1/(a1+a2)a2/[a3(a2+a3)]=1/a3-1/(a2+a3)...an-1/[an(an-1+an)]=1/an-1/(an-1+an)a

用降阶法计算行列式.-a1 a1 0 ...0 00 -a2 a2 ...0 0.0 0 0 ...-an an1 1

依次第二列加上第一列,第三列加上第二列...原式=-a100...00-a20...0.000...-an0123...nn+1所以原式=(n+1)*(-1)^n*a1*a2*...*an

设a1不等于a2(a1+b1)(a1+b2)=(a2+b1)+(a2+b2)=1证明(a1+b1)(a2+b1)=(a1

设a1不等于a2,已知(a1+b1)(a1+b2)=(a2+b1)(a2+b2)=1证明(a1+b1)(a2+b1)=(a1+b2)(a2+b2)=-1吗?标点和运算符号很不清楚!补充一下问题吧!

如果向量组A a1,a2,a3 B a1.a2.a3.a4 C a1 a2 a3 a5 又RA=RB=3 RC=4证明R

因为RA=RB=3所以得到a1,a2,a3线性无关a1.a2.a3.a4线性相关所以a4可以由a1.a2.a3线性表出则有a4=k1a1+k2a2+k3a3假设X1a1+X2a2+X3a3+X4(a5

已知数列{an}满足a1=2,an+1=1+an1−an(n∈N*),则a1a2a3…a2010的值为(  )

∵1=2,an+1=1+an1−an(n∈N*),∴a2=1+a11−a1=1+21−2=-3,a3=1+a21−a2=1−31+3=−12a4=1+a31−a3=1−121+12=13a5=1+a4

证明向量组线性相关已知,A:a1,a2,a3,B:b1,b2,b3.b1=a1-3a2-a3.b2=2a1+a2.b3=

方法一:b1-b2+b3=0,所以向量组B线性相关方法二:矩阵B=(b1,b2,b3)=(a1,a2,a3)C=AC,其中C=121-314-101|C|=0,所以秩(B)≤秩(C)<3,所以向量组B