a1=6,a2=3an=3an-1 4an-2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 09:29:16
在数列an中,a1=1/2 an+1=3an/an+3 求a2 a3 a4 a5?

a(n+1)=3an/(an+3)a2=(3*1/2)/(1/2+3)=(3/2)/(7/2)=3/7a3=(3*3/7)/(3/7+3)=(9/7)/(24/7)=9/24=3/8a4=(3*3/8

在数列{an}中,若a1+a2+.+an=2^n,则(a1)^3+(a2)^3+(an)^3等于______

a1+a2+.+an=2^na1+a2+.+an+a(n+1)=2^(n+1)两式相减得a(n+1)=2^n所以an=2^(n-1)在已知式中令n=1得a1=2令n=2得a2=2所以数列的通项公式为a

等比数列{an}满足a1+a2=3,a2+a3=6,则a7=______.

由a1+a2=a1(1+q)=3①,a2+a3=a1q(1+q)=6②,②÷①得:q=2,把q=2代入①得到a1=1,则a7=26=64.故答案为:64

已知数列{an}满足a1=1,a2=3,an+2=3an+1-2an求an

由an+2=3an+1-2an可得an+2-an+1=2(an+1-an)因为a2-a1=2,所以an+1-an不会等于0,则an+1-an是以2为公比的等比数列由上可得an+1-an=2^nan-a

已知数列an满足对任意的n∈N*,都有an>0,且a1^3+a2^3+.an^3=(a1+a2+.an)^2.

当n=1时,有a13=a12,由于an>0,所以a1=1.当n=2时,有a13+a23=(a1+a2)2,将a1=1代入上式,由于an>0,所以a2=2.由于a13+a23++an3=(a1+a2++

两道等比数列的题.在等比数列an中,a1+a2+a3=6 a2+a3+a4= -3 则S8=?在等比数列an中,a1+a

1.a1+a2+a3=6a2+a3+a4=q*a1+q*a2+q*a3=q(a1+a2+a3)=6q=-3q=-1/2a1+a2+a3=a1+q*a1+q²*a1=a1-a1/2+a1/4=

数列(an)a1+a2+a3+...+an=3^n+2求an的通项公式

根据题意知S1=a1=5Sn=3^n+2S(n-1)=3^(n-1)+2an=Sn-S(n-1)=3^n-3^(n-1)=2*3^(n-1)(n>=2)an=2*3^(n-1)(n>=2)a1=5

在数列{an}中,已知a1=1/3,a1+a2+.+an/n=(2n-1)an (1)求,a2,a3,a4,并猜想an的

1)自己算2)可以猜,也可算出a1+a2+.+an=(2n-1)nana1+a2+.+a(n+1)=(2n+1)(n+1)a(n+1)a(n+1)=(2n+1)(n+1)a(n+1)-(2n-1)na

若等比数列{an}满足a1+a2=3,a3+a4=12,则a1+a2+a3+……+an=

设等比数列{an}的公比为q,由已知得a1+a1*q=3,a1*q^2+a1*q^3=12,解得a1=1,q=2.所以a1+a2+a3+……+an=1+2+2^2+2^3+……+2^(n-1)=(1-

若等差数列{an}的通项an=10-3n 求|a1|+|a2|+.|an|

居然发现复制我答案的.我的是原版.只不过复制党都不看题.你算的没错啊.an=10-3n>0n3时|a1|+|a2|+.|a10|=a1+a2+a3-a4-a5-...-an=-(a1+a2+.+an)

已知数列an,an>0,Sn=a1+a2+a3.+an,且an=6Sn/an + 3,求Sn!

An=6Sn/(An+3)6Sn=(An)^2+3Ann>=26S(n-1)=(A(n-1))^2+3A(n-1)6An=(An)^2+3An-(A(n-1))^2-3A(n-1)(An)^2-(A(

已知数列{an}中,a1=-1,a2=4,an+2+2an=3an+1 求证:数列{an+1-an}是等比数列,并求{a

a(n+2)+2an=3a(n+1)a(n+2)-a(n+1)=2a(n+1)-2an[a(n+2)-a(n+1)]/[a(n+1)-2an]=2∴数列{an+1-an}是等比数列a(n+1)-an=

数列{an}中,a1=1/6,an=(a1+a2+...+an-1)/(2+3+...+n),求1.a2,a3,a4;2

解由题意可得an=(a1+a2+...+an-1)/(2+3+...+n),a1=1/6=1/2*3a2=(a1)/2=(1/6)/2a2=1/12=1/3*4a3=(a1+a2+)/(2+3)=(1

数列an满足n ∈ N*,an > 0 且a1^3 + a2^3 + a3^3 + ...+ an^3 = (a1 +

记Tn表示{an}的前n项和a1^3+a2^3+a3^3+...+an^3=(a1+a2+a3+...+an)^2……(1)a1^3+a2^3+a3^3+...+a^3(n-1)=(a1+a2+a3+

已知数列{an}中,a1=3,a2=6,且An+2=An+1.那么A2012=?

:在数列an中,a1=3,a2=6,an+2=an+1-an;分析可得:a3=a2-a1=6-3=3,a4=a3-a2=3-6=-3,a5=a4-a3=-3-3=-6,a6=a5-a4=-6-(-3)

已知数列an满足a1=1.a2=3,an+2=3an+1-2an

a(n+2)=3*a(n+1)-2*ana(n+2)-a(n+1)=2*(a(n+1)-an)a2-a1=3-1=2a(n+1)-an=2^na(n+2)-2a(n+1)=a(n+1)-2*ana2-

已知数列{an}满足a1=4,an+1=an+p.3^n+1(n属于N+,P为常数),a1,a2+6,a3成等差数列.

经化简得a1a2a3分别为a1=4a2=a1+3p+1=5+3p a3=a1+12p+2=6+12pa1,a2+6,a3成等差数列.的2a2+12=a1+a3即22+6p=10+12p解得p

数列{an}满足 a1=2,a2=5,an+2=3an+1-2an.(1)求证:数列{an+1-an}是等比数列; (2

(1)证明:由条件得a[n+2]-a[n+1]=2(a[n+1]-a[n])首项为a[2]-a[1]=5-2=3,公比为2,所以{a[n+1]-a[n]}为等比数列由(1)得a[n+1]-a[n]=3

在等差数列{an}中,a1=1,a2=3,an+2=3an+1-2an(n属于N+)证明数列{an+1-an}是等比数列

a(n+2)-an=2(an-a(n-1))a2-a1=3-1=2数列{an+1-an}是首项为2公比为2等比数列