A2-A-7E=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 04:29:25
设A是n阶方阵,且A2=A,证明A+E可逆

由A^2=A知道A的特征值只能是1和0若|A+E|=0,则-1是其特征值,这不可能所以|A+E|≠0,即可逆

ab(a2+b2)x2-(a+b2)x+(a2-b2)/(a2+b2)=0

还有其他条件吗再问:用含ab的代数式表示

设方阵A满足A2-2A-E=0,证明A-2E可逆,并求(A-2E)-1次方

解:因为A^2-2A-E=0所以A(A-2E)=E所以A-2E可逆,且(A-2E)^-1=A.

=IF(COUNTIF($A$1:A2,A2)>0,COUNTIF($A$1:A2,A2))

这个公式应该是可以在同一列向下复制的,然后就会变成=IF(COUNTIF($A$1:A3,A3)>0,COUNTIF($A$1:A3,A3))=IF(COUNTIF($A$1:A4,A4)>0,COU

设A 为n 阶方阵,A不等于0 ,若A2次方-3A=0 .证明A-3E 不可逆.

由题:A^2-3A=0(这里的0,表示n阶0矩阵,以下同)得到:A(A-3E)=0由于A≠0,因此A-3E=0,0矩阵不可逆,从而A-3E不可逆!

已知a2+3a+1=0 求   1+1/a a2+1/a2

求1+1/a?写错了吧,是不是求a+1/a?a²+3a+1=0a²+1=-3a把a=0代入,1=0,不成立所以a不等于0所以两边可以同除以不等于0的aa+1/a=-3a+1/a=-

已知n阶方阵A满足A2+2A-3E=0,证明A可逆,并写出A的逆距阵的表达式

做法是这样的:A^2+2A=3E再因式分解A*(A+2E)/3=E所以A的逆矩阵是(A+2E)/3

若方阵A满足A2+A-7E=0,求证A+3E可逆,并求其逆

A2+A-7E=0,(A+3E)(A-2E)=E所以由书上推论,得A+3E可逆,且A+3E的逆矩阵(A+3E)^(-1)=A-2E.

设方阵A满足A2-A-2E=0,证明:A和A+2E均可逆,并求A和A+2E的逆矩阵.

证明:∵方阵A满足A2-A-2E=0,∴A2-A=2E,∴A×A−E2=E所以A可逆,逆矩阵为A−E2,∵方阵A满足A2-A-2E=0,∴A2=A+2E,由A可逆知A2可逆,所以A+2E可逆,逆矩阵为

设n阶方阵A,满足A2-3A-3E=0,证明A-E可逆,并求(A-E)-1

证:由A2-3A-3E=0,得(A-E)(A-2E)=5E(A-E)[(A-2E)/5]=E由定义,得(A-E)可逆,且(A-E)-1=(A-2E)/5再问:再答:就是这个题目啊。再问:哦哦,谢谢

A a2=new A("a2");是什么意思

看得不大懂,不过这个类写得确实不算好:1、classA{.}定义了一个A类;2、类内部有一个私有字符串name;3、类内部有三个对外函数A(stringx)、func1()、func2(),这里函数A

设n阶矩阵A满足Am=0,m是正整数,证:E-A可逆,且(E-A)=E+A+A2+A3+……Am-1

利用公式E=E-A^m=(E-A)(E+A+A^2+A^3+……A^m-1)可得.

设方阵A满足A2(平方)-3A-2E=0,求(A-E)(-1次方)=?

A^2-3A+2E=(A-E)(A-2E)=4E, 由逆矩阵的定义有:A-E=1/4(A-2E)

设n阶方阵A满足A2-A-7E=0,证明A和A-3E可逆

由A^2-A-7E=0得:A(A-1)=7E故A(A-1)的行列式为7而不为0,假如A是不可逆矩阵,则A的行列式为0那么A(A-1)的行列式就为0矛盾,所以A可逆又原式可变为(A+2E)(A-3E)=

设三阶矩阵A满足A2=E(E为单位矩阵),但A≠±E,试证明:(秩(A-E)-1)(秩(A+E)-1)=0.

证明:∵A2=E∴0=(A-E)(A+E)∴0=r((A+E)(A-E))≥r(A+E)+r(A-E)-3∴r(A+E)+r(A-E)≤3而 r(A+E)+r(A-E)=r(A+E)+r(E

线性代数题 已知A2-2A-8E=0,则(A+E)-1=

若存在B使B(A+E)=E,就可以了A2-2A-8E=0--->A2-2A-3E=5E---->(A+E)(A-3E)=5E---->(A+E)(A/5-3/5E)=E所以(A/5-3/5E)此类问题

若a2-3a+1=0,求a2+a2/1的值

你的表述存在问题,原题应该是这样的:若a^2-3a+1=0,求a^2+1/a^2的值.∵a^2-3a+1=0,∴a-3+1/a=0,∴a+1/a=3,∴(a+1/a)^2=9,∴a^2+2+1/a^2

在平面直角坐标系xoy中,已知椭圆E:x2/a2+y2/b2=1(a>b>0)

设直线l的斜率为k由条件可得c/a=√2/2a²=b²+c²a=(√2)b点F到直线MN的距离为h=b|k|/√(k²+1)线段MN的长度为d=2√2b×√[(