广东如图园o是直角三角形abc的外接圆角ABC等于90°玄bd等于ba

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 01:35:16
P是△ABC所在平面外一点,O是点P在平面α上的射影,若△ABC是直角三角形,且PA=PB-PC

因为PO垂直于平面ABC,所以OA=OB=OC=根号下(PA平方-PO平方)=根号下(PB平方-PO平方)=根号下(PC平方-PO平方)所以O是三角形ABC的外心.

怎么证明三角形ABC是等腰直角三角形

用四点共圆就很好证!用其他方法难度很大!∵∠ABC=∠ADC∴A、B、D、C四点共圆∴∠ACB=∠ADB=45°∵∠ABC=45°∴∠ABC=∠ACB=45°∴AB=AC,∠BAC=90°∴△ABC是

已知p是直角三角形ABC所在平面外的一点,O是斜边AB的中点,并且PA=PB=PC,求证:PO垂直平面ABC

取BC中点D,连接OD,PD∵PB=PC,D为BC中点∴PD⊥BC∵O为AB中点,D为BC中点∴OD‖AC而AC⊥BC,故OD⊥BC,即PD⊥BC,OD⊥BC,所以BC⊥平面POD(定理:如果一条直线

如右图,点B、O分别为大圆和小圆的圆心,直角三角形ABC的面积是52cm²,阴影部分的面积是?

OA=OB=OC△ABC的面积=OA*OB=OA*2=52cm²AB^2=OA^2+OB^2=2*OA^2=2*52cm²=104cm²阴影部分的面积=△ABC的面积+小

如图直角三角形ABC中 ∠B=30 ∠C=90 圆O是它的内切圆 半径为1 则这个直角三角形的面积是多少

内切圆半径=(AC+BC-AB)/2=1即:AC+BC-AB=2又:AB=2AC,BC=根号3AC故有:AC+根号3AC-2AC=2AC=2/(根号3-1)=根号3+1所以,BC=根号3*(根号3+1

如图 等腰直角三角形ABC 角BAC=90 0是斜边BC中点,连接OA,以点O为旋转中心,将△ABC顺时针旋转α

AB与B'C'交于点F,BC与A'C'交于G,AB与A'B'交于HOB=OC,角B=角C,角BOF=角C'OG△BOF≌△C'OG,BF=C'G,OF=OG,又OB'=OC,所以B'F=CG,角B'=

如图,在等腰直角三角形abc中,∠b=90°,ab=bc,o是如图,在直角三角形ABC中,∠B=90度,AB=cb,O是

证明PE=DO因为,∠B=90度,AB=BC,所以三角形ABC为等腰直角三角形,又O是AC上的中点,所以BO垂直AC,∠C=∠CBO=45°由已知PB=PD可知△BPA为等腰三角形,∠PDB=∠PBD

已知直角三角形abc两直角边为a和b,且a和b是方程x^2-7x+12=o的两根.求直角三角形abc内切圆的面积

x^2-7x+12=o(x-3)(x-4)=0x1=4,x2=3∴a=4,b=3或a=3,b=4∴斜边c=√﹙4²+3²)=5内切圆半径=3×4÷﹙3+4+5)=1三角形abc内切

证明ABC是直角三角形

因为AD=DC所以∠A=∠ABD因为BD=CD所以∠C=∠DBC因为∠A+∠ABD+∠DBC+∠C=180°所以∠ABD+∠DBC=90°即∠ABC=90°所以ABC是直角三角形

怎样试说明▲ABC是直角三角形

1.证明有一个角是直角.2.满足a^2+b^2=c^2;(^2代表平方)...勾股定律

试说明△ABC一定是直角三角形

解题思路:方程化为一般式得(c+b)x2-2max+m(c-b)=0,∵关于x的一元二次方程c(x2+m)+b(x2-m)-2max=0有两个相等的实数根,∴(-2ma)2-4m(c+b)(c-b)=

如图,三角形ABC是等腰直角三角形

50平方厘米,利用旋转

如图abc是等腰直角三角形

证明:连接AD∵△ABC是等腰直角三角形,D是BC的中点∴AD⊥BC,AD=BD=DC,∠DAQ=∠B,∴AD=BD(与下面两式用大括号括起来)∠DAQ=∠DBPBP=AQ,∴△BPD≌△AQD(SA

abc是等腰直角三角形

连接BD∵∠EDF=∠BDC=90º∠EDB=∠CDF∵等腰直角三角形ABC∴BD=CD∠C=∠ABD∴⊿BDE≌⊿CDF∴CF=BE=5AE=BF=12根据勾股定理得EF=13

如图,AB是圆O的直径,OC垂直AB交圆O于C,求证三角形ABC是等腰直角三角形

证明:因为AB是直径,所以角ACB为直角,又因为OA=OB=OC且OC垂直AB交圆O于C所以角BAC=角CBA=45度所以AC=BC所以三角形ABC是等腰直角三角形

如图,三角形abc是直角三角形

连AD、EF,可证△ADE≌△CDF,△ADF≌BDE,所以DE=DF,AE=CF=5,AF=BE=12,由勾股定理可得EF=13,DE=DF=6.5乘根号2,S△DEF=169/8.

如图所示,在等腰直角三角形ABC中,O是斜边AC的中点,P是斜边AC上的一个动点,D是BC上

∠PDB=∠PBD=45+∠PBO=45+∠DPC(∠PDB外角)所以,∠PBO=∠DPC.又BP=DPRtΔBOP≌RtΔPDE所以,BO=PE2)PE=AO=BO=OC=a,AP=xEC=DE=O