AB=AC B=C A非零矩阵
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 17:08:30
AB=0|AB|=0|A|*|B|=0|A|=0或|B|=0
必要性因为AB=0所以B的列向量都是Ax=0的解由于B≠0所以Ax=0有非零解所以r(A)
两个矩阵相乘得零,AB=0,其中A为可逆矩阵,则B一定是零矩阵.因为A为可逆矩阵,所以A^(-1)存在,两边同乘以A^(-1)A^(-1)AB=A^(-1)OB=O再问:为什么不能找到一个非零矩阵与A
行列式等于零,Ax=0有非零解,所以存在B.(简单只需取一个解,加上n-1个零解,构成B)
|B|≠0故B可逆故ABB^-1=0*B^-1故A=0
你这样想AB=0如果用矩阵方程的形式来写是什么样的呢应该是A的每一行乘以B的每一列等于0那么B的每一列就是AX=0的解而齐次方程的解系应该都是线性无关的所以B的列向量必然线性无关同理A的行向量也是线性
可以这么证:设A是N×N的方阵.首先,存在非零列向量X(NX1),满足AX=0,因为A不满秩.其次,存在非零列向量Y(N×1),满足A(T)Y=0,因为A(T)也不满秩(T代表矩阵转置).然后,考虑这
设A是k*m矩阵B是m*n矩阵则根据秩的不等式:r(AB)>=r(A)+r(B)-m由于AB=0,所以r(AB)=0换言之:r(A)+r(B)=1那么r(A)只能严格小于m了.A有m列,但r(A)
因为AB=0,所以B的列向量都是齐次线性方程组Ax=0的解所以B的列向量可由Ax=0的基础解系线性表示所以r(B)=1只能得到r(A)
1或-1再答:求采必对再答:也就是正负1再答:举例子就行了再答:举例子就行了再答:要不要过程再问:谢谢#再答:
因为A是m*n矩阵,则r(A)
因为AB=0r(A)+r(B)=1r(A)
方法一:设A为m×n矩阵,B 为n×s矩阵,则由AB=O知:r(A)+r(B)≤n,又A,B为非零矩阵,则:必有rank(A)>0,rank(B)>0,可见:rank(A)<n,rank(B
AB=B(A-E)B=0A=E或者B是0阵A=E,那么A可逆如果B是0阵,那么A可逆与否都无关了再问:亲(A-E)B=0无法判断A=E或者B是0阵吧已知B为非零矩阵忘写了再答:其实我们可以这么假设,假
可以.但A,B必须是同阶方阵若不是同阶方阵,则不行
好好把线性代数再翻一翻.这个是个非零矩阵的反证问题.若AB为零,则根据其逆矩阵和B矩阵可逆堆出A矩阵为零.与假设相反.
-2,0,2,4ab/|ab|bc/|bc|ca/|ca|abc/|abc|这四项中每一项都为1或-1,分类讨论a、b、c都是正数时,原式=4a、b、c中2正1负时,原式=-2a、b、c中1正2负时,
/>3个正数原式=1+1+1+=42个正数,1个负数原式=1-1-1-1=-21个正数,2个负数原式=-1+1-1+1=03个负数原式=1+1+1-1=2
因为A,B非零,所以r(A)和r(b)>=1,又因为AB=0所以A存在非零实数解,所以r(A)
选C.这是因为:记A的列矩阵是A1,.An;B的行矩阵是B1,.Bn.由于AB=0所以(A1,...An)B=0因为B是非0矩阵,所以矩阵B至少有一列的元素不全为零,所以(A1,...An)乘以这一列