当x->0时,(1 xe^x)^(1 x)的极限为多少
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 19:32:46
设:f(x)=e^x-ex则:f'(x)=e^x-e当x>1时,f'(x)>0即:函数f(x)在x>1时是递增的,则:对于任意x>1,都有:f(x)>f(1)=0成立,即:对一切x>1,有:e^x-e
若f(x)=F'(x)则FF'=xe^x/2(1+x)^2采纳吧!因为∫FdF=∫xe^x/2(1+x)^2dxF^2/2=[e^x/(x+1)+C]/2又F(0)=1,F(x)>0解得C=0,F(x
∫(0到1)xe^(2x)dx=1/2∫(0到1)xde^(2x)=1/2xe^(2x)-1/2∫(0到1)e^(2x)dx=1/2xe^(2x)-1/4e^(2x)+c
令t=1/x,x→∞等效于t→0,以下极限为t→0的情况原式=lim[(e^t)/t-1/t]=lim[(e^t-1)/t]由于e^t-1和t在t→0时为等价无穷小,因此这个极限为1或者可以用洛必达(
用分步积分法啊∫[0,1](xe^-x)dx=-∫[0,1]xde^(-x)=-xe^(-x)[0,1]+∫[0,1]e^(-x)dx=-1/e-e^(-x)[0,1]=1-2/e
当x>0时,设f(x)=e∧x-1-x,f'(x)=e^x-1>0,所以F(x)在x>0时为增函数,所以f(x)>f(0),e∧x-1-x>0,e∧x-1>x,同样方法可以证明e∧x-1<xe∧x(设
y+xdy/dx-e^(y^2)-2xe^(y^2)dy/dx-1=0x=1,y=0dy/dx-1-2dy/dx-1=0dy/dx=-2
1,f(x)'=e^(-x)*(x-1)*[e^(2x-2)-1]讨论下x>1,x
设个方程F(X)=e的x方-xe,然后对F(X)求导,解出驻点,当X>1时,F(X)的导数大于0,F(X)在X>1时,为增函数,就有F(1)>0,即e的x方-xe>0,即可
原式=∫(0,1)xde^x=xe^x(0,1)-∫(0,1)e^xdx=(xe^x-e^x)(0,1)=(e-e)-(0-1)=1
∫[0,1]xe^(-x)dx=-xe^(-x)[0,1]+∫[0,1]e^(-x)dx=-1/e-e^(-x)[0,1]=1-2/e
点击看大图
笨办法做的话,都乘开,得到(2xe^x+xe^x)/(e^3x+3e^2x+4e^x+2),上下除以e^2x,得到(2x+xe^-x)/(e^x+3+4e^-x+2e^-2x),x趋于无穷的时候上下都
∫(-1,1)xe^(x|x|)dx=∫(-1,0)xe^(-x^2)dx+∫(0,1)xe^x^2dx=-1/2∫(-1,0)e^(-x^2)d(-x^2)+1/2∫(0,1)e^x^2dx^2=1
分部积分法∫xe^x/(1+x)^2dx=-∫xe^xd[1/(1+x)]=-xe^x/(1+x)+∫(1+x)e^x×1/(1+x)dx=-xe^x/(1+x)+∫e^xdx=-xe^x/(1+x)
y'-y=xe^(2x)e^(-x)(y'-y)=xe^x(e^(-x)y)'=xe^x两边积分:e^(-x)y=∫xe^xdx=∫xd(e^x)=xe^x-∫e^xdx=xe^x-e^x+Cy=(x
只心飘扬,方程两边同时对X微分得,y+xdy/dx-exp(y^2)-xexp(2ydy/dx)-1=0,将x=1,y=0代入这个式子,解得,dy/dx-1-1=0,因此dy/dx=2
点击即可放大,哈哈!
f'(x)=xe^x+e^x=e^x(x+1)因为e^x>0,故当x>-1时函数单调递增,x<-1时递减x=-1时,函数取得极小值再问:是最小值不是极小值.....再答:本题的极小值也是最小值