ab为圆o直径,,弧ec等于弧bc

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 05:15:43
如图,AB为圆O直径,弧CD等于弧CB,CE垂直AD于E,连BE,1.求证:CE为圆O切线 2.若AE等于6,圆O半径为

如图左.欲证明CE是圆的切线,只需证明CE垂直于OC即可.连OC,引BF垂直于CE交于F点.则弧长相等就有弦长相等,(不知道你学了哪些定理,自己可以参考图片分析).第二题,设角1=角BEC.如右图.引

如图,AB为圆O直径,弧CD等于弧CB,CE垂直AD于E,连BE,1.求证:CE为圆O切线2

证明:连结OC,BC,因为CE垂直于AD于E,AB是圆O的直径,所以角CED=角ACB=90度,所以角EAC+角ECA=角BAC+角ABC=90度,因为弧CD=弧CB,所以角EAC=角BAC,所以角E

已知AB为圆O的直径,CD垂直于AB,AC弧等于FC弧,求证AE=CE

连接CO交AF于H连OEAC弧等于FC弧所以C为AF弧的中点则OC⊥AF因为CD⊥ABOC=OA∠COD=∠AOH△COD≌△AOH则OD=OH则CH=AD可推△EAD≌△EVHAE=CE

如图,AB是圆O的直径,OC⊥AB,交圆O于点C,D是弧AC上一点,E是AB上一点,EC⊥CD,交BD于点F.

延长CE交⊙O于G.连接BG、DG,∵EC⊥DC,∠DCE=90°,∴DG是直径,∠DBG=90°,∵AB是直径,DG是直径,∴弦BG=AD,∵OC⊥AB,∴∠BGC=45°,⊿GBF是等腰直角三角形

圆o是三角形ABC的外接圆,AB为直径 弧AC等于弧CF CD垂直于AB于D求证AE=CE

因CG垂直于AB,则CD=DG且弧AC=AG;因弧AC等于弧CF,所以弧AG=CF;则角ACG=CAF所以三角形ACE为等腰三角形,AE=CE

AB是圆O的直径,半径OC垂直AB.D为OC中点.DE平行AB交弧AC于E.求正弧EC=2弧EA

链接OE,OE为半径,OD为半径的一半,所以三角形OED中,角OED为30度,DOE为60度,所以AOE为30度,得出结论~~~~~

在圆O中,AB为直径,CD垂直AB,D为CO中点,DE平行AB,求证弧EC=弧EA

你把CO延长交圆于F连接EFEO那么角COE等于角OEF+OFE三角形OEF等腰,证明这俩弧所对应的圆心角等于圆周角的二倍就好,下面你自己好好想想,好好学习,多注意休息,欢迎提问

已知AB CD为直径 弦CE平行AB 弧EC的度数为50则角DCE的度数为

圆心为O∵CE弧=50°∴∠COE=50°∵CO=EO∴∠OCE=∠OEC所以∠OCE=∠OEC=65°一个互余,一个互补

以圆O的直径BC为一边作等边三角形ABC,AB、AC交圆O于D、E两点.试猜测线段BD、DE、EC相等吗?

太简单了啊!连接OD,OE,由等边三角形OBD得BD=R,由等边三角形OEC得EC=R,由等边三角形ODE得DE=R,所以三者相等!(根据角度判断等边三角形)

AB,CD是圆O的两直径,弦CE平行AB,弧EC的度数为40度,求角BCD的度数

由弧EC的度数为40°,得∠OCE=70°因为CE平行AB,所以∠BOD=∠OCE=70°所以∠BCD=1/2∠BOD=35°

AB为圆O直径

解题思路:连接OD,如图,∵DE为⊙O的切线,∴OD⊥DE,∴∠ODE=90°,即∠CDE+∠ODC=90°,解题过程:解:(1)连接OD,如图,∵DE为⊙O的切线,∴OD⊥DE,∴∠ODE=90°,

AB,CD是圆O的两条直径,OC⊥BE于P 求证(1)弧EC=弧AD (2)OP:AE的值是常数

证明:连接OE.(1)由于OP=OP,OB=OE,故RT△OPE≌RT三角形OPB(HL定理).于是

如图所示,已知圆O的弦AB垂直于直径CD,垂足为F,点E在AB上,且EA=EC.

已知,EA=EC,可得:∠ACE=∠CAE.CD是AB的垂直平分线,可得:AC=BC,则有:∠BAC=∠ABC.在△ACE和△ABC中,∠ACE=∠CAE=∠BAC=∠ABC,所以,△ACE∽△ABC

如图,已知AB为圆O的直径,AD切圆O于点A弧EC等于弧CB则下列结论不一定正确的是?

图所示:因为AD切圆o于点A,而AB是圆的直径所以AB⊥AD又因为弧EC=弧CB所以∠BOC=∠COE因为弧CE对应的圆周心是∠COE,而对应的圆周角是∠CAE所以∠COE=2∠CAE因为弧CB对应的

ab是圆O的一条弦 过点O作AB的垂线,垂足为C,已知OC等于圆O直径的四分之一 求劣弧弧AB所对的圆周角的大小

连接OA,OB因为OC等于1/4的直径,则OC等于1/2的OA又因为OC垂直AB所以∠AOC=60度(勾股定理)因为∠AOB=2∠AOC所以∠AOB=120度因为∠AOB是劣弧AB所对的圆心角又因为同

已知AB是圆O的直径 AD切圆O于A 弧EC=弧CB 则下列结论不一定正确的是

:如图所示:因为AD切圆o于点A,而AB是圆的直径        所以AB⊥AD   &n

如图,在⊙O中,AB为直径,弧CB等于弧CF,弦CG⊥AB,交AB于D,交BF于E.求证:BE=EC.

证明:连接BC,∵OB是半径,CG⊥AB,∴弧BC=弧BG,∵弧BC=弧CF,∴弧CF=弧BG,∵圆周角∠CBF对弧CF,圆周角∠BCG对弧BG,∴∠CBF=∠BCG,∴BE=CE.