ac为圆o直径且pa垂直ac,bc是圆o的一条弦,直线pb交直线ac于点d

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 09:55:04
已知:AC是圆O的直径,PA垂直于AC,连接OP,弦PB交直线AC与D,BD=2PA,求SIN∠OPA的值~

假设半径为1则ao=1,ad=4三角形PAD为直角三角形设PA=xPB=xBD=2x即PD=3x,勾股定理PA平方+AD平方=PD平方,求得x=根号2,进一步po=根号3,你的答案就死三分之根号3

如图,已知直线PA交圆O于A、B两点,AE是圆O的直径,点C为圆O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D

设DA=X,DC=6-DA=6-X,连接EC,AE是直径,所以∠ACE=90°=∠CDA,∠CAE=∠CAD,所以⊿ACE∽⊿ADC,[AA]AE:AC=AC:ADAC²=AE*ADAD&#

如图:已知ac是圆o的直径pa垂直ac,连结op,弦cb平行op,直线pb交直线ac于d,bd=2pa证明pb是圆o的切

∵cb//op∴∠aop=∠acb∵ob=oc(bc是弦)∴∠acb=∠obc∵cb//op所以∠obc=bop∴∠aop=∠acb=∠obc=∠bop又有ob=oa,op=op∴△aop≌△bop∴

三角形ABC内接于圆O,其中AB为圆O的直径,PA垂直于平面ABC,AC=BC=2,PA=AB,求直线PB和平面PAC所

主要步骤:由AB为直径,AC=BC,可知△ABC是等腰RT△,BC⊥AC,又PA⊥面ABC,则PA⊥BC,即BC⊥面PAC,故∠BPC为直线PB与面PAC所形成角.AB=2√2,PA=AB=2√2,P

已知直线PA交园心O于A、B两点,AE是圆心O的直径,点C为圆心o上一点,且AC平分角PAE.过C作cD垂直PA,垂足为

连接OC..∵点C在⊙O上,OA=OC,.∴∠OCA=∠OAC..∵CD⊥PA,.∴∠CDA=90°,则∠CAD+∠DCA=90°..∵AC平分∠PAE,.∴∠DAC=∠CAO..∴∠DCO=∠DCA

如图,已知直线PA交圆O于A,B两点,AE是圆O的直径,点C为圆O上一点,且AC平分角PAE,过C作CD⊥PA,垂足D

过O作OM⊥AB于M.即∠OMA=90°,∵AB=8,∴由垂径定理得:AM=4,∵∠MDC=∠OMA=∠DCO=90°,∴四边形DMOC是矩形,∴OC=DM,OM=CD.∵AD:DC=1:3,∴设AD

如图,已知直线PA交圆O于A,B两点,AE是圆O的直径,C为圆O上一点,且AC平分角PAE 若AD:DC=1:3 求圆O

半径等于3AC/2连接CE,根据圆的性质AC垂直于CE因为角DAC=角CAE所以三角形ADC与三角形ACE相似所以AC/AE=AD/DC所以AE=3AC所以半径=3AC/2

平行四边形ABCD中,对角线AC、BD相交于O,点P是四边形外一点,且PA垂直PC,PB垂直PD,垂足为P

证明:连接OP在直角△APC中,OP是斜边中线∴OP=1/2AC在直角△BPD中,OP是斜边中线∴OP=1/2BD∴AC=BD四边形ABCD是平行四边形∴平行四边形ABCD是矩形

如图,已知PA垂直圆O所在的平面,AB是圆O的直径,AB=2,C是圆O上的一点,且AC=BC,PC与圆O所在的平面成45

①求证:EF//面ABC证明:∵E是PC的中点,F数PB的中点∴EF是△PBC的中位线∴EF//BC∵BC∈面ABC∴EF//面ABC②求证:EF⊥面PAC∵AB是⊙O的直径∴∠ACB=90°即AC⊥

如图,AB是⊙O的直径,点C是圆O上异于A,B的任意一点,直线PA垂直于圆O所在平面,PA=2AC,AD垂直于PC

因为PA垂直于圆O所在平面,BC在圆O所在平面内,所以PA垂直于BC因为AB是圆O直径,所以AC垂直于BC所以BC垂直于平面APC所以BC垂直于PC所以角PCA为平面ABC与平面PBC所成角在Rt三角

如图已知PA、PB分别切圆O于点A和B,AC为圆O的直径,PC交AB于E,ED垂直AC于D,过E作PB的平行线交BC于F

经过半个小时的研究,你懂的第一个问,因为PA是切线,所以PA垂直于AC,又因为ED垂直于AC,所以PA平行于DE,所以DE除以PA等于CE除以CP,又因为EF平行于PB,所以EF除以PB也等于CE除以

已知ab为圆o的直径,cd是弦,且ab垂直于点e,连结ac、oc、bc

(1)CE=12OC*OC=CE*CE+OE*OEOE=OB-EB=OC-EB代入的OB=20AB=2*OB=40(2)没看到你的图

已知PA⊥圆o所在的平面,AB是圆o的直径,AB=2,C是圆o上一点,且PA=AC=BC,E、F分别为PC,PB中点

只给提示可以吗?因为有些说明很难打.(1)中位线定理.EF是三角形PBC的中位线.(2)由中位线定理知EF||BC,而在圆o中,BC垂直于AC,即得EF垂直于AC;又因为PA垂直于BC,即PA垂直于E

如图PA PB分别切圆O A B BC为圆o的直径 求证AC平行OP

应该是PAPB分别切圆O,BC为圆o的直径求证AC平行OP证明:连接AB,OC∵∠PAO=∠PBO=90º∴PAOB四点共圆∴∠POB=∠PAB∵∠PAB=∠ACB【弦切角等于弦所对的圆周角

如图AC是圆O直径,PA垂直AC,连接OP,弦CB//OP,直径BC交直线AC于D,BD=2PA求证BP为圆O切线,OP

1.连接OB因为CB‖OP所以∠BCO=∠POA因为OB=OC所以∠BCO=∠CBO所以∠CBO=∠POA又因为∠CBO=∠POB所以∠BOP=∠POA在△POB和△POA中PO=PO∠BOP=∠PO

如图,BC为圆O的直径,AD垂直BC与点D,点P是弧AC上的一点,连接PB分别交AD,AC与点E,F弧PA=弧AB,

角BAC是直角(直径所对的角是直角)角ABP=角APB(弧PA=弧AB)角ABP=角ACB所以角ABP=角ACB角ACB+角CAD=90度而角CAD+角BAD=90度所以角BAD=角ACB所以角ABP

如图,BC是为圆O的直径,AD垂直BC于点D,P是弧AC上的一动点,连接PB分别交AD、AC于点E、F 1)当弧PA=

P在弧AC的中点因为P在弧AC的中点,所以弧PA=弧PC=弧AB所以角PCA=角PBC因为BC是直径,AD垂直BC于点D所以角P=角EDB=90度所以在三角形BDE和三角形PFC中,角BED=角PFC

如图,BC是为圆O的直径,AD垂直BC于点D,P是弧AC上的一动点,连接PB分别交AD、AC于点E、F 1)当弧PA

如图,BC为圆O的直径,AD垂直于BC于D,P是弧AC上一动点,连接PB分别交AD,AC于点E,F(1)当弧AB=弧PA时,求证:AE=EB(2)当点P在什么位置时,AF=EF?证明你的结论.相关说明

如图,AB是圆O直径,C为圆O上的一点,AD垂直CD,且AC平分角BAD.求证:CD是圆O的切线.如图,AB是圆O直径,

因为AD垂直CD所以角ADC=90度即角DAC+角DCA=90度1式连接OC因为OA=OC所以角CAO=角ACO2式因为AC平分角BAD所以角DAC=角CAB3式由1式2式3式可得角DCA+角ACB=