怎么 证明特征值的n次方为原方阵n次方的特征值

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/18 05:58:58
设n阶方阵A的特征值为0,1,……,n-1,证明:A+E可逆

设A的特征值为λ,则A+E的特征值为λ+1(这儿使用的是公式:f(A)的特征值为f(λ))从而因为A的特征值为0,1,……,n-1,所以A+E的特征值为1,2,……,n,从而|A+E|=n!不等于0,

设N阶方阵A的特征值为λ,证明:2A+E(E为n阶单位阵)的特征值为2λ+1

设λ对应的A的特征向量为x,则Ax=λx,那么(2A+E)x=2Ax+x=2λx+x=(2λ+1)x,由特征值定义可知2λ+1是2A+E关于特征向量x的特征值

高等代数证明:A、B皆为n阶方阵,如果AB=BA,且A有n个不同的特征值,证明B相似于对角

由A有n个不同的特征值,每个特征值对应的特征空间维数为1,且所有特征向量线性无关.设a为A的特征值,x为对应的非零特征向量,则ABx=BAx=B(Ax)=B(ax)=a(Bx),这说明Bx也是A的对应

设A为N阶方阵,A的m次方=0,m是自然数,则A的特征值为

A的m次方的特征值=A的特征值的m次方,故先求A的m次方的特征值.既然A的m次方=0,0矩阵的特征值当然是0,故A的m次方的特征值为0.故A的特征值=0.

请问老师:n阶方阵A的k次方为单位阵,k为正整数,则A一定可以对角化吗?怎么证明?

可以.考虑矩阵的秩,有:R(AB)≤R(A),则n=R(E)=R(A^K)≤R(A)≤n,R(A)=n所以A是非奇异阵,可以对角化.

A为n阶方阵,证明:若存在正整数k使A^k=0,则A的特征值只能是0

需两个知识点:1.零矩阵的特征值只有零2.若λ是A的特征值,g(x)是x的多项式,则g(λ)是g(A)的特征值本题目的证明:设λ是A的特征值,则λ^k是A^k的特征值因为A^k=0,而零矩阵的特征值只

证明题 设方阵A满足A的k次方等於0 对某个正整数k成立 证明:A的特征值一定为0

证明:设λ是A的特征值则λ^k是A^k的特征值(这是定理)而A^k=0,零矩阵的特征值只能是0所以λ^k=0所以λ=0即A的特征值一定为0.

设λ 是n阶方阵A的特征值,证明:Α+2E的特征值为λ+2.

λ是n阶方阵A的特征值,则:Ax=λx,其中x是λ对应的特征向量.考察(A+2E)x(A+2E)x=Ax+2Ex=λx+2x=(λ+2)x所以Α+2E的特征值为λ+2,同时可以看到,对应的特征向量不变

设A为n阶方阵,k是常数,证明:|kA|=k的n次方|A|

这是方阵行列式的基本性质kA是A中所有元素都乘以k取行列式|kA|:每一行都有一个k公因子,根据行列式的性质,每行提出一个k所以:|kA|=k^n|A|

设A为n阶方阵,且A是可逆的,证明det(adjA)=(detA)的(n-1)次方

有个重要关系式:AA*=det(A)E,A*是A的伴随阵.取行列式得det(A)det(A*)=det(A)^ndet(E)=det(A)^n,由于det(A)不等于0,因此有det(A*)=(det

n阶方阵的k次方的行列式等于n阶方阵的行列式的k次方,怎么证明啊?

这个书上有对任意的方阵A,B|AB|=|A||B|对于A的k次方,可以由归内法证明.k=1时,有|A|=|A|是显然的设k=n时成立,即|A^n|=|A|^n那么当k=n+1时|A^(n+1)|=|A

设λ为方阵A的特征值,证明λ²是A²的特征值.

(用c代替lambda)c是特征值,则存在非零向量x使得cx=Ax,于是A^2x=A(Ax)=cAx=c^2x,c^2是A^2特征值

设入不等于0是m阶方阵Am*nBn*m的特征值,证明入也是n阶方阵BA的特征值

λ≠0.由λ是AB的特征值,存在非零向量x使得ABx=λx.所以BA(Bx)=B(ABx)=B(λx)=λBx,且Bx≠0(否则λx=ABx=0,得λ=0,矛盾).所以Bx是BA的属于特征值λ的特征向

若n阶方阵A的各列元素之和均为2,证明n维向量x=(1,1,……,1)的T次方,为A的T次方的特征向量,并且相应的特征值

A^T·x=(a11+a12+……+a1n,a21+a22+……+a2n,……,an1+an2+……+ann)^T=(2,2,……,2)^T=2x根据特征值与特征向量的概念,x为A的T次方的特征向量,

设三阶方阵A的3个特征值为1,2, -4,则A(-1次方) 的三个特征值?

三阶方阵A的3个特征值为1,2,-4,则A(-1次方)的三个特征值1,1/2,-1/4.请楼主参考!

设n阶方阵A的n个特征值互异,n阶方阵B与A有相同的特征值,证明:A与B是相似的?

因为A的n个特征值互异所以A可对角化,且A相似于对角矩阵diag(a1,...,an)又因为n阶方阵B与A有相同的特征值所以B也可对角化,且B相似于对角矩阵diag(a1,...,an)由相似的传递性

一个n阶方阵的不同特征值对应的特征向量线性无关,错的,如何证明?

这个结论是对的呀再问:关于矩阵下面说法错误的是:1.矩阵的秩等于该矩阵的行向量组的秩;2.矩阵的秩等于该矩阵的列向量组的秩;3.一个n阶方阵的不同特征值对应的特征向量线型无关;4.相似矩阵有相同的特征

证明:设n阶方阵A满足A^2=A,证明A的特征值为1或0

设a为矩阵A的特征值,X为对应的非零特征向量.则有AX=aX.aX=AX=A^2X=A(AX)=A(aX)=aAX=a(aX)=a^2X,(a^2-a)X=0,因X为非零向量,所以.0=a^2-a=a

证明:如果n*n阶方阵A有个n个不同的特征值b1--bn,那么对应每个特征值bi,矩阵A-bi的秩为n-1

设特征值b1--bn对应的特征向量为v1--vn.问题显然是对称的,不失一般性,考虑A-b1.显然,(A-b1)v1=Av1-b1v1=b1v1-b1v1=0,这说明0是A-b1的一个特征值.而(A-