怎么证明y=ln(x 根号下1 x的平方是奇函数)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 07:32:02
证明函数Y=LN(X+根号下X平方+1)是奇函数,求它的反函数.

首先我们知道,一个数的原函数和它的反函数奇偶性相同,所以此题如果可以证明函数的反函数是奇函数即可.求反函数过程如下:由原式可知,e的y次方=x+根号下(x²+1)即:e的y次方-x=根号下(

证明ln(-x+根号下(x^2+1))是奇函数

将x换成-x,代入,ln(x+根号下(x^2+1)加上原式,会得到两者之和为ln(x^2+1-x^2)=0,得到为奇函数

y=ln[x+根号下(1+x^2)] 怎么求函数的奇偶性

先确定定义域,R,关于原点对称f(-x)=㏑(-x+√(1+(-x)²))=㏑(√(1+x²)-x)=㏑(1/(√(1+x²)+x))=-㏑(√(1+x²)+x

y=tan(ln根号下x^2-1)求导

再答:���Ϻ����

①证明:arcshx=ln(x 根号下(1 x^2));②:求它的周期y=sin3x cos2x

如图再问:第二题呢?再答:第二题不会啊

y=ln(x+根号下x平方+2)求导

=[1+x/(x^2+1)^(1/2)]/[x+(1+x^2)^(1/2)]

求Y=1/ln(X+1)+根号下(4-x²)的值域

郭敦顒回答:x≠0,0<x≤2,x→0时,1/ln(x+1)→+∞,√(4-x²)→2,y→+∞;x=2时,1/ln(x+1)=0.91024,√(4-x²)=0,y=1/ln(x

函数Y=ln[x+根号下(x平方+1)],求它的反函数.怎么求?

根据反函数的定义,函数y=f(x)为单调连续函数,则它的反函数x=g(y),它也是单调连续的.  为此我们可给出反函数的求导法则:  定理:若x=g(y)是单调

函数y=ln根号下(1+x^2)/(1-x^2)的导数是什么

y=1/2[ln(1+x^2)-ln(1-x^2)]y'=1/2[2x/(1+x^2)-(-2x)/(1-x^2)]=x/(1+x^2)+x/(1-x^2)=2x/(1-x^4)

求导:y=ln(x+根号下(1+x^2))

y'=1/(x+√(1+x²))*(x+√(1+x²)'(x+√(1+x²)'=1+1/[2√(1+x²)]*(1+x²)'=1+2x/[2√(1+x

y=ln[-x+根号下(x^2+1)]与y=-ln[x+根号下(x^2+1)]为什么表示的是同一个函

1)这两个函数对所有实数有定义;2)ln[-x+根号下(x^2+1)]=ln[1/(x+根号下(x^2+1))]=-ln[x+根号下(x^2+1)]

证明f(x)=ln(x+【根号下x的平方+1】)是奇函数.

因为f(x)=ln(x+【根号下x的平方+1】)所以f(-x)=ln(-x+【根号下x的平方+1】)f(x)+f(-x)=ln(x+【根号下x的平方+1】)+ln(-x+【根号下x的平方+1】)=ln

Y=ln(x+根号下x2+a2)的导数

y'=1/[x+√(x2+a2)]×[x+√(x2+a2)]'=1/[x+√(x2+a2)]×【1+x/√(x2+a2)】=1/[x+√(x2+a2)]×【[x+√(x2+a2)]/√(x2+a2)】

求导:1:y=ln(1-x) 2:y=ln 1除以根号下1-x 3:y=ln根号下1-x 4:y=ln 1除以1-x

1,y=ln(1-x)y'=1/(1-x)*(1-x)'=1/(1-x)*(-1)=1/(x-1);2,y=ln[1/√(1-x)]=-ln√(1-x)y'=-1/√(1-x)*[√(1-x)]'=-

y=ln根号下(1+sin方x)

复合求导,先把ln后面的式子看成整体f(x),写成它的倒数,再乘以整体f(X)的导数

设y=ln根号下1-x/1+x,则y''为多少

y=ln根号下1-x/1+x=0.5ln(1-x)-0.5ln(1+x)y'=0.5/(1-x)-0.5/(1+x)=0.5(1+x-1+x)/(1-x)(1+x)=x/(1-x²)y''=

y=ln根号下X 求导

y=ln√x=(1/2)lnxy'=1/(2x)再问:d()=1/根号下xdx括号内填什么再答:dy=(1/√x)dxy=∫(1/√x)dx=2√x+C(C是一个常数)

z=ln(y-x^2)+.根号下1-y-x的定义域

y-x^2>01-y-x>=0所以x^2

求函数y=(根号下2x-x^2)/ln(2x-1)的定义域

由题意可得:x^2-2x02x-1不等于1联立解得1/2