怎么证明y=ln(x 根号下1 x的平方是奇函数)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 07:32:02
首先我们知道,一个数的原函数和它的反函数奇偶性相同,所以此题如果可以证明函数的反函数是奇函数即可.求反函数过程如下:由原式可知,e的y次方=x+根号下(x²+1)即:e的y次方-x=根号下(
将x换成-x,代入,ln(x+根号下(x^2+1)加上原式,会得到两者之和为ln(x^2+1-x^2)=0,得到为奇函数
先确定定义域,R,关于原点对称f(-x)=㏑(-x+√(1+(-x)²))=㏑(√(1+x²)-x)=㏑(1/(√(1+x²)+x))=-㏑(√(1+x²)+x
图片看得见否?
再答:���Ϻ����
如图再问:第二题呢?再答:第二题不会啊
=[1+x/(x^2+1)^(1/2)]/[x+(1+x^2)^(1/2)]
郭敦顒回答:x≠0,0<x≤2,x→0时,1/ln(x+1)→+∞,√(4-x²)→2,y→+∞;x=2时,1/ln(x+1)=0.91024,√(4-x²)=0,y=1/ln(x
根据反函数的定义,函数y=f(x)为单调连续函数,则它的反函数x=g(y),它也是单调连续的. 为此我们可给出反函数的求导法则: 定理:若x=g(y)是单调
y=1/2[ln(1+x^2)-ln(1-x^2)]y'=1/2[2x/(1+x^2)-(-2x)/(1-x^2)]=x/(1+x^2)+x/(1-x^2)=2x/(1-x^4)
y'=1/(x+√(1+x²))*(x+√(1+x²)'(x+√(1+x²)'=1+1/[2√(1+x²)]*(1+x²)'=1+2x/[2√(1+x
1)这两个函数对所有实数有定义;2)ln[-x+根号下(x^2+1)]=ln[1/(x+根号下(x^2+1))]=-ln[x+根号下(x^2+1)]
因为f(x)=ln(x+【根号下x的平方+1】)所以f(-x)=ln(-x+【根号下x的平方+1】)f(x)+f(-x)=ln(x+【根号下x的平方+1】)+ln(-x+【根号下x的平方+1】)=ln
y'=1/[x+√(x2+a2)]×[x+√(x2+a2)]'=1/[x+√(x2+a2)]×【1+x/√(x2+a2)】=1/[x+√(x2+a2)]×【[x+√(x2+a2)]/√(x2+a2)】
1,y=ln(1-x)y'=1/(1-x)*(1-x)'=1/(1-x)*(-1)=1/(x-1);2,y=ln[1/√(1-x)]=-ln√(1-x)y'=-1/√(1-x)*[√(1-x)]'=-
复合求导,先把ln后面的式子看成整体f(x),写成它的倒数,再乘以整体f(X)的导数
y=ln根号下1-x/1+x=0.5ln(1-x)-0.5ln(1+x)y'=0.5/(1-x)-0.5/(1+x)=0.5(1+x-1+x)/(1-x)(1+x)=x/(1-x²)y''=
y=ln√x=(1/2)lnxy'=1/(2x)再问:d()=1/根号下xdx括号内填什么再答:dy=(1/√x)dxy=∫(1/√x)dx=2√x+C(C是一个常数)
y-x^2>01-y-x>=0所以x^2
由题意可得:x^2-2x02x-1不等于1联立解得1/2