怎样求x从1到2的积分
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 04:47:38
∫(x+sinx)/(1+cosx)dx=∫(x+2sinx/2cosx/2)/(2cos^2x/2)dx=1/2∫xsec^2x/2dx+∫tanx/2dx=∫xdtanx/2+∫tanx/2dx=
LZ你自己是对的f(x)dx从1到3的积分是一个定积分为一个常数再次求导结果为0
∫[0,1]xe^(2x)dx=[(1/2)xe^(2x)-(1/4)e^(2x)][0,1]=[e²/2-e²/4]-[-1/4]=(e²/4)+1/4=(e²
直接做变量替换cosx=1-2根号(t),sinx=根号(4t-4根号(t)),微分有sinxdx=dt/根号(t),即dx=dt/【2根号(t)*根号(1-根号(t))】f(x)=1/根号(2+2根
这个不用算,你把cos方用2倍角公式化成cos2x,然后由三角函数周期性可知cos2x,2cosx在0到2π积分是0,最后结果应是3π
再问:你是令u=x和v=xe^(-2ax^2)吗再答:嗯,这是分步积分法再问:那v不就以u为变量了吗再答:额,不是这样看的,首先是凑微分。凑完后用分步积分,u=x,和v=e^(-2ax^2)再答:v是
原函数Lnx=Ln1-Lna=-Lna=正无穷(a趋近于0)不存在
∫costdt=sint+C∫(0,x²)costdt=sinx²∫(0,x²)costdt的导数为2x*cosx²再问:为什么书上写着答案是-sinx∧2??
∫dx/(1+x^4)=(1/2)[∫(1+x²)dx/(1+x^4)+∫(1-x²)dx/(1+x^4)].分子分母同除于x²=(1/2){∫[(1/x²)+
两边对x求导f'(x)=∫f(t)/t²dt+f(x)/x,移项f'(x)-f(x)/x=∫f(t)/t²dt,在求导f''(x)-[f'(x)x-f(x)]/x²=f(
再问:好人做到底,继续帮忙写出来吧,不会才来问的,谢谢再问:好人做到底,继续帮忙写出来吧,不会才来问的,谢谢再答:
经济数学团队为你解答.
再问:可是我看第一题的答案是+不是-。。。。。再问:还有请问第二步到第三步是怎么来的?再答:1/(x+2)+1/(x-2)=4/[(x+2)(x-2)]=4/(x^2-4)再问:哦哦哦!懂了!谢谢!再
答:∫{x/√[(1+x)(1-x)]}dx=∫[x/√(1-x^2)]dx设x=sint,-π/2再问:答案是π/4+1再答:哦,不好意思,积分函数相乘的我弄成了相除,稍候重新解答答:∫{x*√[(
∫xe^(x^2)dx=(1/2)∫e^(x^2)d(x^2)=(1/2)e^(x^2)+C(C为常数)代入上下限,可知原积分=(e-1)/2
积分:(0,2)[e^x]/2dx=[e^x]/2|(0,2)=(e^2)/2-(e^0)/2=(e^2)/2-1/2